Drinking Water Distribution System Network Clustering Using Self-Organizing Map for Real-Time Demand Estimation
AbstractConsumer demand estimation is a key step in real-time drinking water system (DWS) modeling used for demand forecasting, optimal operations, and water quality management. Consumer nodes in a DWS are generally clustered to reduce the number of unknown demands to be estimated from a limited num...
Gespeichert in:
Veröffentlicht in: | Journal of water resources planning and management 2020-12, Vol.146 (12) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | |
container_title | Journal of water resources planning and management |
container_volume | 146 |
creator | Rana, S. M. Masud Boccelli, Dominic L Marchi, Angela Dandy, Graeme C |
description | AbstractConsumer demand estimation is a key step in real-time drinking water system (DWS) modeling used for demand forecasting, optimal operations, and water quality management. Consumer nodes in a DWS are generally clustered to reduce the number of unknown demands to be estimated from a limited number of measurement locations. A clustering methodology using the self-organizing map (SOM) is presented, which groups consumer nodes based on sensitivity of measurements to perturbations in the consumer demands and through the use of exogenous consumer information representative of, for example, socioeconomic information. The SOM algorithm not only developed demand clusters, but also provided intuitive visualization of the high-dimensional sensitivity space, which can provide important visual clues about the clustering problem such as the maximum number of clusters that can reasonably be formed and sharpness of the clusters. When applied to an example network, the sensitivity-based SOM clusters improved the performance in representing the observed measurements and demand estimate uncertainty, but reduced the performance in representing the overall network hydraulics relative to the actual clusters. Incorporating exogenous information about the actual clusters demonstrated the potential for providing trade-offs between representing the limited observed hydraulic information and the overall network hydraulics. The results from the SOM algorithm clearly demonstrate a need for clustering approaches that incorporate network-specific information (e.g., measurement locations, sensitivity information, and exogenous data) to develop demand estimates that are capable of representing observed information while adequately capturing overall system dynamics. |
doi_str_mv | 10.1061/(ASCE)WR.1943-5452.0001289 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2445923140</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2445923140</sourcerecordid><originalsourceid>FETCH-LOGICAL-a385t-1229c5829fbf2620fb5cd2ba8826710ccff85dbf76e8cc65916375f0b65b615d3</originalsourceid><addsrcrecordid>eNp1kElPwzAQhS0EEqXwHyy4wCHFdmIn5la1ZZEKlbqoR8tx7MptlmInQuXXk6gsJy4zmtF7b0YfANcYDTBi-P52uBhN7tbzAeZRGNCIkgFCCJOEn4De7-4U9FAchgGPODsHF95vW1GMKOmBauxsubPlBq5lrR0cW187mza1rUq4OPhaF_BN1x-V28FR3rSz68Qr39WFzk0wcxtZ2s9ufpV7aCoH51rmwdIWGo51IcsMTnxtC9llXoIzI3Ovr757H6weJ8vRczCdPb2MhtNAhgmtA0wIVzQh3KSGMIJMSlVGUpkkhMUYKWVMQrPUxEwnSjHKMQtjalDKaMowzcI-uDnm7l313mhfi23VuLI9KUgUUU5CHKFW9XBUKVd577QRe9c-6g4CI9EBFqIDLNZz0cEUHUzxDbg1s6NZeqX_4n-c_xu_AKHLgJc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2445923140</pqid></control><display><type>article</type><title>Drinking Water Distribution System Network Clustering Using Self-Organizing Map for Real-Time Demand Estimation</title><source>American Society of Civil Engineers:NESLI2:Journals:2014</source><creator>Rana, S. M. Masud ; Boccelli, Dominic L ; Marchi, Angela ; Dandy, Graeme C</creator><creatorcontrib>Rana, S. M. Masud ; Boccelli, Dominic L ; Marchi, Angela ; Dandy, Graeme C</creatorcontrib><description>AbstractConsumer demand estimation is a key step in real-time drinking water system (DWS) modeling used for demand forecasting, optimal operations, and water quality management. Consumer nodes in a DWS are generally clustered to reduce the number of unknown demands to be estimated from a limited number of measurement locations. A clustering methodology using the self-organizing map (SOM) is presented, which groups consumer nodes based on sensitivity of measurements to perturbations in the consumer demands and through the use of exogenous consumer information representative of, for example, socioeconomic information. The SOM algorithm not only developed demand clusters, but also provided intuitive visualization of the high-dimensional sensitivity space, which can provide important visual clues about the clustering problem such as the maximum number of clusters that can reasonably be formed and sharpness of the clusters. When applied to an example network, the sensitivity-based SOM clusters improved the performance in representing the observed measurements and demand estimate uncertainty, but reduced the performance in representing the overall network hydraulics relative to the actual clusters. Incorporating exogenous information about the actual clusters demonstrated the potential for providing trade-offs between representing the limited observed hydraulic information and the overall network hydraulics. The results from the SOM algorithm clearly demonstrate a need for clustering approaches that incorporate network-specific information (e.g., measurement locations, sensitivity information, and exogenous data) to develop demand estimates that are capable of representing observed information while adequately capturing overall system dynamics.</description><identifier>ISSN: 0733-9496</identifier><identifier>EISSN: 1943-5452</identifier><identifier>DOI: 10.1061/(ASCE)WR.1943-5452.0001289</identifier><language>eng</language><publisher>New York: American Society of Civil Engineers</publisher><subject>Algorithms ; Clustering ; Computational fluid dynamics ; Consumer information ; Demand ; Drinking water ; Economic forecasting ; Fluid flow ; Hydraulics ; Measurement ; Nodes ; Quality management ; Real time ; Self organizing maps ; Sensitivity ; Sharpness ; Socioeconomic factors ; System dynamics ; Technical Papers ; Water distribution ; Water distribution systems ; Water engineering ; Water management ; Water quality ; Water quality management ; Water resources management</subject><ispartof>Journal of water resources planning and management, 2020-12, Vol.146 (12)</ispartof><rights>2020 American Society of Civil Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a385t-1229c5829fbf2620fb5cd2ba8826710ccff85dbf76e8cc65916375f0b65b615d3</citedby><cites>FETCH-LOGICAL-a385t-1229c5829fbf2620fb5cd2ba8826710ccff85dbf76e8cc65916375f0b65b615d3</cites><orcidid>0000-0002-7360-6412</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/(ASCE)WR.1943-5452.0001289$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/(ASCE)WR.1943-5452.0001289$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,75964,75972</link.rule.ids></links><search><creatorcontrib>Rana, S. M. Masud</creatorcontrib><creatorcontrib>Boccelli, Dominic L</creatorcontrib><creatorcontrib>Marchi, Angela</creatorcontrib><creatorcontrib>Dandy, Graeme C</creatorcontrib><title>Drinking Water Distribution System Network Clustering Using Self-Organizing Map for Real-Time Demand Estimation</title><title>Journal of water resources planning and management</title><description>AbstractConsumer demand estimation is a key step in real-time drinking water system (DWS) modeling used for demand forecasting, optimal operations, and water quality management. Consumer nodes in a DWS are generally clustered to reduce the number of unknown demands to be estimated from a limited number of measurement locations. A clustering methodology using the self-organizing map (SOM) is presented, which groups consumer nodes based on sensitivity of measurements to perturbations in the consumer demands and through the use of exogenous consumer information representative of, for example, socioeconomic information. The SOM algorithm not only developed demand clusters, but also provided intuitive visualization of the high-dimensional sensitivity space, which can provide important visual clues about the clustering problem such as the maximum number of clusters that can reasonably be formed and sharpness of the clusters. When applied to an example network, the sensitivity-based SOM clusters improved the performance in representing the observed measurements and demand estimate uncertainty, but reduced the performance in representing the overall network hydraulics relative to the actual clusters. Incorporating exogenous information about the actual clusters demonstrated the potential for providing trade-offs between representing the limited observed hydraulic information and the overall network hydraulics. The results from the SOM algorithm clearly demonstrate a need for clustering approaches that incorporate network-specific information (e.g., measurement locations, sensitivity information, and exogenous data) to develop demand estimates that are capable of representing observed information while adequately capturing overall system dynamics.</description><subject>Algorithms</subject><subject>Clustering</subject><subject>Computational fluid dynamics</subject><subject>Consumer information</subject><subject>Demand</subject><subject>Drinking water</subject><subject>Economic forecasting</subject><subject>Fluid flow</subject><subject>Hydraulics</subject><subject>Measurement</subject><subject>Nodes</subject><subject>Quality management</subject><subject>Real time</subject><subject>Self organizing maps</subject><subject>Sensitivity</subject><subject>Sharpness</subject><subject>Socioeconomic factors</subject><subject>System dynamics</subject><subject>Technical Papers</subject><subject>Water distribution</subject><subject>Water distribution systems</subject><subject>Water engineering</subject><subject>Water management</subject><subject>Water quality</subject><subject>Water quality management</subject><subject>Water resources management</subject><issn>0733-9496</issn><issn>1943-5452</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kElPwzAQhS0EEqXwHyy4wCHFdmIn5la1ZZEKlbqoR8tx7MptlmInQuXXk6gsJy4zmtF7b0YfANcYDTBi-P52uBhN7tbzAeZRGNCIkgFCCJOEn4De7-4U9FAchgGPODsHF95vW1GMKOmBauxsubPlBq5lrR0cW187mza1rUq4OPhaF_BN1x-V28FR3rSz68Qr39WFzk0wcxtZ2s9ufpV7aCoH51rmwdIWGo51IcsMTnxtC9llXoIzI3Ovr757H6weJ8vRczCdPb2MhtNAhgmtA0wIVzQh3KSGMIJMSlVGUpkkhMUYKWVMQrPUxEwnSjHKMQtjalDKaMowzcI-uDnm7l313mhfi23VuLI9KUgUUU5CHKFW9XBUKVd577QRe9c-6g4CI9EBFqIDLNZz0cEUHUzxDbg1s6NZeqX_4n-c_xu_AKHLgJc</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Rana, S. M. Masud</creator><creator>Boccelli, Dominic L</creator><creator>Marchi, Angela</creator><creator>Dandy, Graeme C</creator><general>American Society of Civil Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>H97</scope><scope>KR7</scope><scope>L.G</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-7360-6412</orcidid></search><sort><creationdate>20201201</creationdate><title>Drinking Water Distribution System Network Clustering Using Self-Organizing Map for Real-Time Demand Estimation</title><author>Rana, S. M. Masud ; Boccelli, Dominic L ; Marchi, Angela ; Dandy, Graeme C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a385t-1229c5829fbf2620fb5cd2ba8826710ccff85dbf76e8cc65916375f0b65b615d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Clustering</topic><topic>Computational fluid dynamics</topic><topic>Consumer information</topic><topic>Demand</topic><topic>Drinking water</topic><topic>Economic forecasting</topic><topic>Fluid flow</topic><topic>Hydraulics</topic><topic>Measurement</topic><topic>Nodes</topic><topic>Quality management</topic><topic>Real time</topic><topic>Self organizing maps</topic><topic>Sensitivity</topic><topic>Sharpness</topic><topic>Socioeconomic factors</topic><topic>System dynamics</topic><topic>Technical Papers</topic><topic>Water distribution</topic><topic>Water distribution systems</topic><topic>Water engineering</topic><topic>Water management</topic><topic>Water quality</topic><topic>Water quality management</topic><topic>Water resources management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rana, S. M. Masud</creatorcontrib><creatorcontrib>Boccelli, Dominic L</creatorcontrib><creatorcontrib>Marchi, Angela</creatorcontrib><creatorcontrib>Dandy, Graeme C</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Journal of water resources planning and management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rana, S. M. Masud</au><au>Boccelli, Dominic L</au><au>Marchi, Angela</au><au>Dandy, Graeme C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Drinking Water Distribution System Network Clustering Using Self-Organizing Map for Real-Time Demand Estimation</atitle><jtitle>Journal of water resources planning and management</jtitle><date>2020-12-01</date><risdate>2020</risdate><volume>146</volume><issue>12</issue><issn>0733-9496</issn><eissn>1943-5452</eissn><abstract>AbstractConsumer demand estimation is a key step in real-time drinking water system (DWS) modeling used for demand forecasting, optimal operations, and water quality management. Consumer nodes in a DWS are generally clustered to reduce the number of unknown demands to be estimated from a limited number of measurement locations. A clustering methodology using the self-organizing map (SOM) is presented, which groups consumer nodes based on sensitivity of measurements to perturbations in the consumer demands and through the use of exogenous consumer information representative of, for example, socioeconomic information. The SOM algorithm not only developed demand clusters, but also provided intuitive visualization of the high-dimensional sensitivity space, which can provide important visual clues about the clustering problem such as the maximum number of clusters that can reasonably be formed and sharpness of the clusters. When applied to an example network, the sensitivity-based SOM clusters improved the performance in representing the observed measurements and demand estimate uncertainty, but reduced the performance in representing the overall network hydraulics relative to the actual clusters. Incorporating exogenous information about the actual clusters demonstrated the potential for providing trade-offs between representing the limited observed hydraulic information and the overall network hydraulics. The results from the SOM algorithm clearly demonstrate a need for clustering approaches that incorporate network-specific information (e.g., measurement locations, sensitivity information, and exogenous data) to develop demand estimates that are capable of representing observed information while adequately capturing overall system dynamics.</abstract><cop>New York</cop><pub>American Society of Civil Engineers</pub><doi>10.1061/(ASCE)WR.1943-5452.0001289</doi><orcidid>https://orcid.org/0000-0002-7360-6412</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0733-9496 |
ispartof | Journal of water resources planning and management, 2020-12, Vol.146 (12) |
issn | 0733-9496 1943-5452 |
language | eng |
recordid | cdi_proquest_journals_2445923140 |
source | American Society of Civil Engineers:NESLI2:Journals:2014 |
subjects | Algorithms Clustering Computational fluid dynamics Consumer information Demand Drinking water Economic forecasting Fluid flow Hydraulics Measurement Nodes Quality management Real time Self organizing maps Sensitivity Sharpness Socioeconomic factors System dynamics Technical Papers Water distribution Water distribution systems Water engineering Water management Water quality Water quality management Water resources management |
title | Drinking Water Distribution System Network Clustering Using Self-Organizing Map for Real-Time Demand Estimation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T06%3A29%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Drinking%20Water%20Distribution%20System%20Network%20Clustering%20Using%20Self-Organizing%20Map%20for%20Real-Time%20Demand%20Estimation&rft.jtitle=Journal%20of%20water%20resources%20planning%20and%20management&rft.au=Rana,%20S.%20M.%20Masud&rft.date=2020-12-01&rft.volume=146&rft.issue=12&rft.issn=0733-9496&rft.eissn=1943-5452&rft_id=info:doi/10.1061/(ASCE)WR.1943-5452.0001289&rft_dat=%3Cproquest_cross%3E2445923140%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2445923140&rft_id=info:pmid/&rfr_iscdi=true |