Synthesis of Leaf‐Vein‐Like g‐C3N4 with Tunable Band Structures and Charge Transfer Properties for Selective Photocatalytic H2O2 Evolution

Photocatalytic H2O2 evolution through two‐electron oxygen reduction has attracted wide attention as an environmentally friendly strategy compared with the traditional anthraquinone or electrocatalytic method. Herein, a biomimetic leaf‐vein‐like g‐C3N4 as an efficient photocatalyst for H2O2 evolution...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2020-09, Vol.30 (39), p.n/a
Hauptverfasser: Feng, Chengyang, Tang, Lin, Deng, Yaocheng, Wang, Jiajia, Luo, Jun, Liu, Yani, Ouyang, Xilian, Yang, Haoran, Yu, Jiangfang, Wang, Jingjing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 39
container_start_page
container_title Advanced functional materials
container_volume 30
creator Feng, Chengyang
Tang, Lin
Deng, Yaocheng
Wang, Jiajia
Luo, Jun
Liu, Yani
Ouyang, Xilian
Yang, Haoran
Yu, Jiangfang
Wang, Jingjing
description Photocatalytic H2O2 evolution through two‐electron oxygen reduction has attracted wide attention as an environmentally friendly strategy compared with the traditional anthraquinone or electrocatalytic method. Herein, a biomimetic leaf‐vein‐like g‐C3N4 as an efficient photocatalyst for H2O2 evolution is reported, which owns tenable band structure, optimized charge transfer, and selective two‐electron O2 reduction. The mechanism for the regulation of band structure and charge transfer is well studied by combining experiments and theoretical calculations. The H2O2 yield of CN4 (287 µmol h−1) is about 3.3 times higher than that of pristine CN (87 µmol h−1), and the apparent quantum yield for H2O2 evolution over CN4 reaches 27.8% at 420 nm, which is much higher than that for many other current photocatalysts. This work not only provides a novel strategy for the design of photocatalyst with excellent H2O2 evolution efficiency, but also promotes deep understanding for the role of defect and doping sites on photocatalytic activity. Leaf‐vein‐like g‐C3N4 synthesized via a KBH4‐assisted thermal polycondensation strategy exhibits enhanced optical absorption, efficient charge carrier separation, and ample active sites, accordingly enabling excellent photocatalytic H2O2 evolution. The synergistic effect of B doping and defect sites on the improvement of catalyst performance is fully discussed by experiments and density functional theory calculations.
doi_str_mv 10.1002/adfm.202001922
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2445877872</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2445877872</sourcerecordid><originalsourceid>FETCH-LOGICAL-g1852-651b5298cf57735aa478e91a0cfe8c6f6386f16638462dae69cde09b580dee3e3</originalsourceid><addsrcrecordid>eNo9kEFPwkAQhRujiYhePW_iubq7bbfbI1YQkyokoPHWLO0sXSxd3G4hvfkT-I3-EkswnN57mZeZzOc4twTfE4zpg8jl-p5iijGJKD1zeoQR5nqY8vOTJ5-XzlVdr7pOGHp-z9nP2soWUKsaaYkSEPL3Z_8BquokUV-Alp2JvTcf7ZQt0LypxKIE9CiqHM2saTLbGKjRIcaFMEtAcyOqWoJBU6M3YKzqxlIbNIMSMqu2gKaFtjoTVpStVRka0wlFw60uG6t0de1cSFHWcPOvfed9NJzHYzeZPL_Eg8RdEh5QlwVkEdCIZzLoHgmE8EMOERE4k8AzJpnHmSSsE5_RXACLshxwtAg4zgE88PrO3XHvxujvBmqbrnRjqu5kSn0_4GHIQ9q1omNrp0po041Ra2HalOD0gDw9IE9PyNPB0-j1lLw_UcJ7bw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2445877872</pqid></control><display><type>article</type><title>Synthesis of Leaf‐Vein‐Like g‐C3N4 with Tunable Band Structures and Charge Transfer Properties for Selective Photocatalytic H2O2 Evolution</title><source>Access via Wiley Online Library</source><creator>Feng, Chengyang ; Tang, Lin ; Deng, Yaocheng ; Wang, Jiajia ; Luo, Jun ; Liu, Yani ; Ouyang, Xilian ; Yang, Haoran ; Yu, Jiangfang ; Wang, Jingjing</creator><creatorcontrib>Feng, Chengyang ; Tang, Lin ; Deng, Yaocheng ; Wang, Jiajia ; Luo, Jun ; Liu, Yani ; Ouyang, Xilian ; Yang, Haoran ; Yu, Jiangfang ; Wang, Jingjing</creatorcontrib><description>Photocatalytic H2O2 evolution through two‐electron oxygen reduction has attracted wide attention as an environmentally friendly strategy compared with the traditional anthraquinone or electrocatalytic method. Herein, a biomimetic leaf‐vein‐like g‐C3N4 as an efficient photocatalyst for H2O2 evolution is reported, which owns tenable band structure, optimized charge transfer, and selective two‐electron O2 reduction. The mechanism for the regulation of band structure and charge transfer is well studied by combining experiments and theoretical calculations. The H2O2 yield of CN4 (287 µmol h−1) is about 3.3 times higher than that of pristine CN (87 µmol h−1), and the apparent quantum yield for H2O2 evolution over CN4 reaches 27.8% at 420 nm, which is much higher than that for many other current photocatalysts. This work not only provides a novel strategy for the design of photocatalyst with excellent H2O2 evolution efficiency, but also promotes deep understanding for the role of defect and doping sites on photocatalytic activity. Leaf‐vein‐like g‐C3N4 synthesized via a KBH4‐assisted thermal polycondensation strategy exhibits enhanced optical absorption, efficient charge carrier separation, and ample active sites, accordingly enabling excellent photocatalytic H2O2 evolution. The synergistic effect of B doping and defect sites on the improvement of catalyst performance is fully discussed by experiments and density functional theory calculations.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202001922</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Anthraquinones ; Band structure of solids ; Biomimetics ; boron doping ; Carbon nitride ; Catalytic activity ; Charge transfer ; defects ; Evolution ; g‐C3N4 H2O2 evolution ; Hydrogen peroxide ; Materials science ; Photocatalysis ; Photocatalysts ; Reduction ; two‐electron oxygen reduction</subject><ispartof>Advanced functional materials, 2020-09, Vol.30 (39), p.n/a</ispartof><rights>2020 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-6996-7955</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202001922$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202001922$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Feng, Chengyang</creatorcontrib><creatorcontrib>Tang, Lin</creatorcontrib><creatorcontrib>Deng, Yaocheng</creatorcontrib><creatorcontrib>Wang, Jiajia</creatorcontrib><creatorcontrib>Luo, Jun</creatorcontrib><creatorcontrib>Liu, Yani</creatorcontrib><creatorcontrib>Ouyang, Xilian</creatorcontrib><creatorcontrib>Yang, Haoran</creatorcontrib><creatorcontrib>Yu, Jiangfang</creatorcontrib><creatorcontrib>Wang, Jingjing</creatorcontrib><title>Synthesis of Leaf‐Vein‐Like g‐C3N4 with Tunable Band Structures and Charge Transfer Properties for Selective Photocatalytic H2O2 Evolution</title><title>Advanced functional materials</title><description>Photocatalytic H2O2 evolution through two‐electron oxygen reduction has attracted wide attention as an environmentally friendly strategy compared with the traditional anthraquinone or electrocatalytic method. Herein, a biomimetic leaf‐vein‐like g‐C3N4 as an efficient photocatalyst for H2O2 evolution is reported, which owns tenable band structure, optimized charge transfer, and selective two‐electron O2 reduction. The mechanism for the regulation of band structure and charge transfer is well studied by combining experiments and theoretical calculations. The H2O2 yield of CN4 (287 µmol h−1) is about 3.3 times higher than that of pristine CN (87 µmol h−1), and the apparent quantum yield for H2O2 evolution over CN4 reaches 27.8% at 420 nm, which is much higher than that for many other current photocatalysts. This work not only provides a novel strategy for the design of photocatalyst with excellent H2O2 evolution efficiency, but also promotes deep understanding for the role of defect and doping sites on photocatalytic activity. Leaf‐vein‐like g‐C3N4 synthesized via a KBH4‐assisted thermal polycondensation strategy exhibits enhanced optical absorption, efficient charge carrier separation, and ample active sites, accordingly enabling excellent photocatalytic H2O2 evolution. The synergistic effect of B doping and defect sites on the improvement of catalyst performance is fully discussed by experiments and density functional theory calculations.</description><subject>Anthraquinones</subject><subject>Band structure of solids</subject><subject>Biomimetics</subject><subject>boron doping</subject><subject>Carbon nitride</subject><subject>Catalytic activity</subject><subject>Charge transfer</subject><subject>defects</subject><subject>Evolution</subject><subject>g‐C3N4 H2O2 evolution</subject><subject>Hydrogen peroxide</subject><subject>Materials science</subject><subject>Photocatalysis</subject><subject>Photocatalysts</subject><subject>Reduction</subject><subject>two‐electron oxygen reduction</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kEFPwkAQhRujiYhePW_iubq7bbfbI1YQkyokoPHWLO0sXSxd3G4hvfkT-I3-EkswnN57mZeZzOc4twTfE4zpg8jl-p5iijGJKD1zeoQR5nqY8vOTJ5-XzlVdr7pOGHp-z9nP2soWUKsaaYkSEPL3Z_8BquokUV-Alp2JvTcf7ZQt0LypxKIE9CiqHM2saTLbGKjRIcaFMEtAcyOqWoJBU6M3YKzqxlIbNIMSMqu2gKaFtjoTVpStVRka0wlFw60uG6t0de1cSFHWcPOvfed9NJzHYzeZPL_Eg8RdEh5QlwVkEdCIZzLoHgmE8EMOERE4k8AzJpnHmSSsE5_RXACLshxwtAg4zgE88PrO3XHvxujvBmqbrnRjqu5kSn0_4GHIQ9q1omNrp0po041Ra2HalOD0gDw9IE9PyNPB0-j1lLw_UcJ7bw</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Feng, Chengyang</creator><creator>Tang, Lin</creator><creator>Deng, Yaocheng</creator><creator>Wang, Jiajia</creator><creator>Luo, Jun</creator><creator>Liu, Yani</creator><creator>Ouyang, Xilian</creator><creator>Yang, Haoran</creator><creator>Yu, Jiangfang</creator><creator>Wang, Jingjing</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6996-7955</orcidid></search><sort><creationdate>20200901</creationdate><title>Synthesis of Leaf‐Vein‐Like g‐C3N4 with Tunable Band Structures and Charge Transfer Properties for Selective Photocatalytic H2O2 Evolution</title><author>Feng, Chengyang ; Tang, Lin ; Deng, Yaocheng ; Wang, Jiajia ; Luo, Jun ; Liu, Yani ; Ouyang, Xilian ; Yang, Haoran ; Yu, Jiangfang ; Wang, Jingjing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g1852-651b5298cf57735aa478e91a0cfe8c6f6386f16638462dae69cde09b580dee3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anthraquinones</topic><topic>Band structure of solids</topic><topic>Biomimetics</topic><topic>boron doping</topic><topic>Carbon nitride</topic><topic>Catalytic activity</topic><topic>Charge transfer</topic><topic>defects</topic><topic>Evolution</topic><topic>g‐C3N4 H2O2 evolution</topic><topic>Hydrogen peroxide</topic><topic>Materials science</topic><topic>Photocatalysis</topic><topic>Photocatalysts</topic><topic>Reduction</topic><topic>two‐electron oxygen reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Chengyang</creatorcontrib><creatorcontrib>Tang, Lin</creatorcontrib><creatorcontrib>Deng, Yaocheng</creatorcontrib><creatorcontrib>Wang, Jiajia</creatorcontrib><creatorcontrib>Luo, Jun</creatorcontrib><creatorcontrib>Liu, Yani</creatorcontrib><creatorcontrib>Ouyang, Xilian</creatorcontrib><creatorcontrib>Yang, Haoran</creatorcontrib><creatorcontrib>Yu, Jiangfang</creatorcontrib><creatorcontrib>Wang, Jingjing</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Chengyang</au><au>Tang, Lin</au><au>Deng, Yaocheng</au><au>Wang, Jiajia</au><au>Luo, Jun</au><au>Liu, Yani</au><au>Ouyang, Xilian</au><au>Yang, Haoran</au><au>Yu, Jiangfang</au><au>Wang, Jingjing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis of Leaf‐Vein‐Like g‐C3N4 with Tunable Band Structures and Charge Transfer Properties for Selective Photocatalytic H2O2 Evolution</atitle><jtitle>Advanced functional materials</jtitle><date>2020-09-01</date><risdate>2020</risdate><volume>30</volume><issue>39</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Photocatalytic H2O2 evolution through two‐electron oxygen reduction has attracted wide attention as an environmentally friendly strategy compared with the traditional anthraquinone or electrocatalytic method. Herein, a biomimetic leaf‐vein‐like g‐C3N4 as an efficient photocatalyst for H2O2 evolution is reported, which owns tenable band structure, optimized charge transfer, and selective two‐electron O2 reduction. The mechanism for the regulation of band structure and charge transfer is well studied by combining experiments and theoretical calculations. The H2O2 yield of CN4 (287 µmol h−1) is about 3.3 times higher than that of pristine CN (87 µmol h−1), and the apparent quantum yield for H2O2 evolution over CN4 reaches 27.8% at 420 nm, which is much higher than that for many other current photocatalysts. This work not only provides a novel strategy for the design of photocatalyst with excellent H2O2 evolution efficiency, but also promotes deep understanding for the role of defect and doping sites on photocatalytic activity. Leaf‐vein‐like g‐C3N4 synthesized via a KBH4‐assisted thermal polycondensation strategy exhibits enhanced optical absorption, efficient charge carrier separation, and ample active sites, accordingly enabling excellent photocatalytic H2O2 evolution. The synergistic effect of B doping and defect sites on the improvement of catalyst performance is fully discussed by experiments and density functional theory calculations.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202001922</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6996-7955</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2020-09, Vol.30 (39), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2445877872
source Access via Wiley Online Library
subjects Anthraquinones
Band structure of solids
Biomimetics
boron doping
Carbon nitride
Catalytic activity
Charge transfer
defects
Evolution
g‐C3N4 H2O2 evolution
Hydrogen peroxide
Materials science
Photocatalysis
Photocatalysts
Reduction
two‐electron oxygen reduction
title Synthesis of Leaf‐Vein‐Like g‐C3N4 with Tunable Band Structures and Charge Transfer Properties for Selective Photocatalytic H2O2 Evolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T00%3A43%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20of%20Leaf%E2%80%90Vein%E2%80%90Like%20g%E2%80%90C3N4%20with%20Tunable%20Band%20Structures%20and%20Charge%20Transfer%20Properties%20for%20Selective%20Photocatalytic%20H2O2%20Evolution&rft.jtitle=Advanced%20functional%20materials&rft.au=Feng,%20Chengyang&rft.date=2020-09-01&rft.volume=30&rft.issue=39&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202001922&rft_dat=%3Cproquest_wiley%3E2445877872%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2445877872&rft_id=info:pmid/&rfr_iscdi=true