An improved emperor penguin optimization based multilevel thresholding for color image segmentation

This paper proposes a multi-threshold image segmentation method based on improved emperor penguin optimization (EPO). The calculation complexity of multi-thresholds increases with the increase of the number of thresholds. To overcome this problem, the EPO is used to find the optimal multilevel thres...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Knowledge-based systems 2020-04, Vol.194, p.105570, Article 105570
1. Verfasser: Xing, Zhikai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 105570
container_title Knowledge-based systems
container_volume 194
creator Xing, Zhikai
description This paper proposes a multi-threshold image segmentation method based on improved emperor penguin optimization (EPO). The calculation complexity of multi-thresholds increases with the increase of the number of thresholds. To overcome this problem, the EPO is used to find the optimal multilevel threshold values for color images. Then, the Gaussian mutation, the Levy flight and the opposition-based learning are employed to increase the search ability of EPO algorithm and balance the exploitation and exploration. The IEPO algorithm optimizes the Kapur’s multi-threshold method to conduct experiments on Berkeley images, Satellite images and plant canopy images. As the experimental results show, the IEPO is the effective method for color image segmentation and have higher segmentation accuracy and less CPU time.
doi_str_mv 10.1016/j.knosys.2020.105570
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2444990789</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0950705120300514</els_id><sourcerecordid>2444990789</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-d9de709b463bcc3385fd76a2a8a2b182331495a5a1a8062bd149b74dc7793e2f3</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIfcIjEOcV2nDq-IFUVL6kSFzhbjr1pXRI72Eml8vW4hDOXXe1oZndnELoleEEwWd7vF5_Ox2NcUExPUFlyfIZmpOI05wyLczTDosQ5xyW5RFcx7jHGlJJqhvTKZbbrgz-AyaDrIfiQ9eC2o3WZ7wfb2W81WO-yWsVE6cZ2sC0coM2GXYC4862xbps1SaZ9m6rt1BayCNsO3PArvUYXjWoj3Pz1Ofp4enxfv-Sbt-fX9WqT66JgQ26EAY5FzZZFrRNUlY3hS0VVpWhNKloUhIlSlYqoCi9pbdJYc2Y056IA2hRzdDftTXa-RoiD3PsxuHRSUsaYEJhXIrHYxNLBxxigkX1IP4ejJFie4pR7OcUpT3HKKc4ke5hkkBwcLAQZtQWnwdgAepDG2_8X_ACgTIIG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2444990789</pqid></control><display><type>article</type><title>An improved emperor penguin optimization based multilevel thresholding for color image segmentation</title><source>Access via ScienceDirect (Elsevier)</source><creator>Xing, Zhikai</creator><creatorcontrib>Xing, Zhikai</creatorcontrib><description>This paper proposes a multi-threshold image segmentation method based on improved emperor penguin optimization (EPO). The calculation complexity of multi-thresholds increases with the increase of the number of thresholds. To overcome this problem, the EPO is used to find the optimal multilevel threshold values for color images. Then, the Gaussian mutation, the Levy flight and the opposition-based learning are employed to increase the search ability of EPO algorithm and balance the exploitation and exploration. The IEPO algorithm optimizes the Kapur’s multi-threshold method to conduct experiments on Berkeley images, Satellite images and plant canopy images. As the experimental results show, the IEPO is the effective method for color image segmentation and have higher segmentation accuracy and less CPU time.</description><identifier>ISSN: 0950-7051</identifier><identifier>EISSN: 1872-7409</identifier><identifier>DOI: 10.1016/j.knosys.2020.105570</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Color image segmentation ; Color imagery ; Emperor penguin optimization ; Gaussian mutation ; Image segmentation ; Kapur entropy ; Levy flight ; Machine learning ; Mutation ; Opposition-based learning ; Optimization ; Satellite imagery ; Thresholds</subject><ispartof>Knowledge-based systems, 2020-04, Vol.194, p.105570, Article 105570</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Apr 22, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-d9de709b463bcc3385fd76a2a8a2b182331495a5a1a8062bd149b74dc7793e2f3</citedby><cites>FETCH-LOGICAL-c334t-d9de709b463bcc3385fd76a2a8a2b182331495a5a1a8062bd149b74dc7793e2f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.knosys.2020.105570$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Xing, Zhikai</creatorcontrib><title>An improved emperor penguin optimization based multilevel thresholding for color image segmentation</title><title>Knowledge-based systems</title><description>This paper proposes a multi-threshold image segmentation method based on improved emperor penguin optimization (EPO). The calculation complexity of multi-thresholds increases with the increase of the number of thresholds. To overcome this problem, the EPO is used to find the optimal multilevel threshold values for color images. Then, the Gaussian mutation, the Levy flight and the opposition-based learning are employed to increase the search ability of EPO algorithm and balance the exploitation and exploration. The IEPO algorithm optimizes the Kapur’s multi-threshold method to conduct experiments on Berkeley images, Satellite images and plant canopy images. As the experimental results show, the IEPO is the effective method for color image segmentation and have higher segmentation accuracy and less CPU time.</description><subject>Algorithms</subject><subject>Color image segmentation</subject><subject>Color imagery</subject><subject>Emperor penguin optimization</subject><subject>Gaussian mutation</subject><subject>Image segmentation</subject><subject>Kapur entropy</subject><subject>Levy flight</subject><subject>Machine learning</subject><subject>Mutation</subject><subject>Opposition-based learning</subject><subject>Optimization</subject><subject>Satellite imagery</subject><subject>Thresholds</subject><issn>0950-7051</issn><issn>1872-7409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIlMIfcIjEOcV2nDq-IFUVL6kSFzhbjr1pXRI72Eml8vW4hDOXXe1oZndnELoleEEwWd7vF5_Ox2NcUExPUFlyfIZmpOI05wyLczTDosQ5xyW5RFcx7jHGlJJqhvTKZbbrgz-AyaDrIfiQ9eC2o3WZ7wfb2W81WO-yWsVE6cZ2sC0coM2GXYC4862xbps1SaZ9m6rt1BayCNsO3PArvUYXjWoj3Pz1Ofp4enxfv-Sbt-fX9WqT66JgQ26EAY5FzZZFrRNUlY3hS0VVpWhNKloUhIlSlYqoCi9pbdJYc2Y056IA2hRzdDftTXa-RoiD3PsxuHRSUsaYEJhXIrHYxNLBxxigkX1IP4ejJFie4pR7OcUpT3HKKc4ke5hkkBwcLAQZtQWnwdgAepDG2_8X_ACgTIIG</recordid><startdate>20200422</startdate><enddate>20200422</enddate><creator>Xing, Zhikai</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20200422</creationdate><title>An improved emperor penguin optimization based multilevel thresholding for color image segmentation</title><author>Xing, Zhikai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-d9de709b463bcc3385fd76a2a8a2b182331495a5a1a8062bd149b74dc7793e2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Color image segmentation</topic><topic>Color imagery</topic><topic>Emperor penguin optimization</topic><topic>Gaussian mutation</topic><topic>Image segmentation</topic><topic>Kapur entropy</topic><topic>Levy flight</topic><topic>Machine learning</topic><topic>Mutation</topic><topic>Opposition-based learning</topic><topic>Optimization</topic><topic>Satellite imagery</topic><topic>Thresholds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xing, Zhikai</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Knowledge-based systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xing, Zhikai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An improved emperor penguin optimization based multilevel thresholding for color image segmentation</atitle><jtitle>Knowledge-based systems</jtitle><date>2020-04-22</date><risdate>2020</risdate><volume>194</volume><spage>105570</spage><pages>105570-</pages><artnum>105570</artnum><issn>0950-7051</issn><eissn>1872-7409</eissn><abstract>This paper proposes a multi-threshold image segmentation method based on improved emperor penguin optimization (EPO). The calculation complexity of multi-thresholds increases with the increase of the number of thresholds. To overcome this problem, the EPO is used to find the optimal multilevel threshold values for color images. Then, the Gaussian mutation, the Levy flight and the opposition-based learning are employed to increase the search ability of EPO algorithm and balance the exploitation and exploration. The IEPO algorithm optimizes the Kapur’s multi-threshold method to conduct experiments on Berkeley images, Satellite images and plant canopy images. As the experimental results show, the IEPO is the effective method for color image segmentation and have higher segmentation accuracy and less CPU time.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.knosys.2020.105570</doi></addata></record>
fulltext fulltext
identifier ISSN: 0950-7051
ispartof Knowledge-based systems, 2020-04, Vol.194, p.105570, Article 105570
issn 0950-7051
1872-7409
language eng
recordid cdi_proquest_journals_2444990789
source Access via ScienceDirect (Elsevier)
subjects Algorithms
Color image segmentation
Color imagery
Emperor penguin optimization
Gaussian mutation
Image segmentation
Kapur entropy
Levy flight
Machine learning
Mutation
Opposition-based learning
Optimization
Satellite imagery
Thresholds
title An improved emperor penguin optimization based multilevel thresholding for color image segmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T07%3A26%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20improved%20emperor%20penguin%20optimization%20based%20multilevel%20thresholding%20for%20color%20image%20segmentation&rft.jtitle=Knowledge-based%20systems&rft.au=Xing,%20Zhikai&rft.date=2020-04-22&rft.volume=194&rft.spage=105570&rft.pages=105570-&rft.artnum=105570&rft.issn=0950-7051&rft.eissn=1872-7409&rft_id=info:doi/10.1016/j.knosys.2020.105570&rft_dat=%3Cproquest_cross%3E2444990789%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2444990789&rft_id=info:pmid/&rft_els_id=S0950705120300514&rfr_iscdi=true