An improved emperor penguin optimization based multilevel thresholding for color image segmentation
This paper proposes a multi-threshold image segmentation method based on improved emperor penguin optimization (EPO). The calculation complexity of multi-thresholds increases with the increase of the number of thresholds. To overcome this problem, the EPO is used to find the optimal multilevel thres...
Gespeichert in:
Veröffentlicht in: | Knowledge-based systems 2020-04, Vol.194, p.105570, Article 105570 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 105570 |
container_title | Knowledge-based systems |
container_volume | 194 |
creator | Xing, Zhikai |
description | This paper proposes a multi-threshold image segmentation method based on improved emperor penguin optimization (EPO). The calculation complexity of multi-thresholds increases with the increase of the number of thresholds. To overcome this problem, the EPO is used to find the optimal multilevel threshold values for color images. Then, the Gaussian mutation, the Levy flight and the opposition-based learning are employed to increase the search ability of EPO algorithm and balance the exploitation and exploration. The IEPO algorithm optimizes the Kapur’s multi-threshold method to conduct experiments on Berkeley images, Satellite images and plant canopy images. As the experimental results show, the IEPO is the effective method for color image segmentation and have higher segmentation accuracy and less CPU time. |
doi_str_mv | 10.1016/j.knosys.2020.105570 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2444990789</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0950705120300514</els_id><sourcerecordid>2444990789</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-d9de709b463bcc3385fd76a2a8a2b182331495a5a1a8062bd149b74dc7793e2f3</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIfcIjEOcV2nDq-IFUVL6kSFzhbjr1pXRI72Eml8vW4hDOXXe1oZndnELoleEEwWd7vF5_Ox2NcUExPUFlyfIZmpOI05wyLczTDosQ5xyW5RFcx7jHGlJJqhvTKZbbrgz-AyaDrIfiQ9eC2o3WZ7wfb2W81WO-yWsVE6cZ2sC0coM2GXYC4862xbps1SaZ9m6rt1BayCNsO3PArvUYXjWoj3Pz1Ofp4enxfv-Sbt-fX9WqT66JgQ26EAY5FzZZFrRNUlY3hS0VVpWhNKloUhIlSlYqoCi9pbdJYc2Y056IA2hRzdDftTXa-RoiD3PsxuHRSUsaYEJhXIrHYxNLBxxigkX1IP4ejJFie4pR7OcUpT3HKKc4ke5hkkBwcLAQZtQWnwdgAepDG2_8X_ACgTIIG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2444990789</pqid></control><display><type>article</type><title>An improved emperor penguin optimization based multilevel thresholding for color image segmentation</title><source>Access via ScienceDirect (Elsevier)</source><creator>Xing, Zhikai</creator><creatorcontrib>Xing, Zhikai</creatorcontrib><description>This paper proposes a multi-threshold image segmentation method based on improved emperor penguin optimization (EPO). The calculation complexity of multi-thresholds increases with the increase of the number of thresholds. To overcome this problem, the EPO is used to find the optimal multilevel threshold values for color images. Then, the Gaussian mutation, the Levy flight and the opposition-based learning are employed to increase the search ability of EPO algorithm and balance the exploitation and exploration. The IEPO algorithm optimizes the Kapur’s multi-threshold method to conduct experiments on Berkeley images, Satellite images and plant canopy images. As the experimental results show, the IEPO is the effective method for color image segmentation and have higher segmentation accuracy and less CPU time.</description><identifier>ISSN: 0950-7051</identifier><identifier>EISSN: 1872-7409</identifier><identifier>DOI: 10.1016/j.knosys.2020.105570</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Color image segmentation ; Color imagery ; Emperor penguin optimization ; Gaussian mutation ; Image segmentation ; Kapur entropy ; Levy flight ; Machine learning ; Mutation ; Opposition-based learning ; Optimization ; Satellite imagery ; Thresholds</subject><ispartof>Knowledge-based systems, 2020-04, Vol.194, p.105570, Article 105570</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Apr 22, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-d9de709b463bcc3385fd76a2a8a2b182331495a5a1a8062bd149b74dc7793e2f3</citedby><cites>FETCH-LOGICAL-c334t-d9de709b463bcc3385fd76a2a8a2b182331495a5a1a8062bd149b74dc7793e2f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.knosys.2020.105570$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Xing, Zhikai</creatorcontrib><title>An improved emperor penguin optimization based multilevel thresholding for color image segmentation</title><title>Knowledge-based systems</title><description>This paper proposes a multi-threshold image segmentation method based on improved emperor penguin optimization (EPO). The calculation complexity of multi-thresholds increases with the increase of the number of thresholds. To overcome this problem, the EPO is used to find the optimal multilevel threshold values for color images. Then, the Gaussian mutation, the Levy flight and the opposition-based learning are employed to increase the search ability of EPO algorithm and balance the exploitation and exploration. The IEPO algorithm optimizes the Kapur’s multi-threshold method to conduct experiments on Berkeley images, Satellite images and plant canopy images. As the experimental results show, the IEPO is the effective method for color image segmentation and have higher segmentation accuracy and less CPU time.</description><subject>Algorithms</subject><subject>Color image segmentation</subject><subject>Color imagery</subject><subject>Emperor penguin optimization</subject><subject>Gaussian mutation</subject><subject>Image segmentation</subject><subject>Kapur entropy</subject><subject>Levy flight</subject><subject>Machine learning</subject><subject>Mutation</subject><subject>Opposition-based learning</subject><subject>Optimization</subject><subject>Satellite imagery</subject><subject>Thresholds</subject><issn>0950-7051</issn><issn>1872-7409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIlMIfcIjEOcV2nDq-IFUVL6kSFzhbjr1pXRI72Eml8vW4hDOXXe1oZndnELoleEEwWd7vF5_Ox2NcUExPUFlyfIZmpOI05wyLczTDosQ5xyW5RFcx7jHGlJJqhvTKZbbrgz-AyaDrIfiQ9eC2o3WZ7wfb2W81WO-yWsVE6cZ2sC0coM2GXYC4862xbps1SaZ9m6rt1BayCNsO3PArvUYXjWoj3Pz1Ofp4enxfv-Sbt-fX9WqT66JgQ26EAY5FzZZFrRNUlY3hS0VVpWhNKloUhIlSlYqoCi9pbdJYc2Y056IA2hRzdDftTXa-RoiD3PsxuHRSUsaYEJhXIrHYxNLBxxigkX1IP4ejJFie4pR7OcUpT3HKKc4ke5hkkBwcLAQZtQWnwdgAepDG2_8X_ACgTIIG</recordid><startdate>20200422</startdate><enddate>20200422</enddate><creator>Xing, Zhikai</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20200422</creationdate><title>An improved emperor penguin optimization based multilevel thresholding for color image segmentation</title><author>Xing, Zhikai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-d9de709b463bcc3385fd76a2a8a2b182331495a5a1a8062bd149b74dc7793e2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Color image segmentation</topic><topic>Color imagery</topic><topic>Emperor penguin optimization</topic><topic>Gaussian mutation</topic><topic>Image segmentation</topic><topic>Kapur entropy</topic><topic>Levy flight</topic><topic>Machine learning</topic><topic>Mutation</topic><topic>Opposition-based learning</topic><topic>Optimization</topic><topic>Satellite imagery</topic><topic>Thresholds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xing, Zhikai</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Knowledge-based systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xing, Zhikai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An improved emperor penguin optimization based multilevel thresholding for color image segmentation</atitle><jtitle>Knowledge-based systems</jtitle><date>2020-04-22</date><risdate>2020</risdate><volume>194</volume><spage>105570</spage><pages>105570-</pages><artnum>105570</artnum><issn>0950-7051</issn><eissn>1872-7409</eissn><abstract>This paper proposes a multi-threshold image segmentation method based on improved emperor penguin optimization (EPO). The calculation complexity of multi-thresholds increases with the increase of the number of thresholds. To overcome this problem, the EPO is used to find the optimal multilevel threshold values for color images. Then, the Gaussian mutation, the Levy flight and the opposition-based learning are employed to increase the search ability of EPO algorithm and balance the exploitation and exploration. The IEPO algorithm optimizes the Kapur’s multi-threshold method to conduct experiments on Berkeley images, Satellite images and plant canopy images. As the experimental results show, the IEPO is the effective method for color image segmentation and have higher segmentation accuracy and less CPU time.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.knosys.2020.105570</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-7051 |
ispartof | Knowledge-based systems, 2020-04, Vol.194, p.105570, Article 105570 |
issn | 0950-7051 1872-7409 |
language | eng |
recordid | cdi_proquest_journals_2444990789 |
source | Access via ScienceDirect (Elsevier) |
subjects | Algorithms Color image segmentation Color imagery Emperor penguin optimization Gaussian mutation Image segmentation Kapur entropy Levy flight Machine learning Mutation Opposition-based learning Optimization Satellite imagery Thresholds |
title | An improved emperor penguin optimization based multilevel thresholding for color image segmentation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T07%3A26%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20improved%20emperor%20penguin%20optimization%20based%20multilevel%20thresholding%20for%20color%20image%20segmentation&rft.jtitle=Knowledge-based%20systems&rft.au=Xing,%20Zhikai&rft.date=2020-04-22&rft.volume=194&rft.spage=105570&rft.pages=105570-&rft.artnum=105570&rft.issn=0950-7051&rft.eissn=1872-7409&rft_id=info:doi/10.1016/j.knosys.2020.105570&rft_dat=%3Cproquest_cross%3E2444990789%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2444990789&rft_id=info:pmid/&rft_els_id=S0950705120300514&rfr_iscdi=true |