Increasing picocyanobacteria success in shelf waters contributes to long‐term food web degradation
Continental margins are disproportionally important for global primary production, fisheries and CO2 uptake. However, across the Northeast Atlantic shelves, there has been an ongoing summertime decline of key biota—large diatoms, dinoflagellates and copepods—that traditionally fuel higher tropic lev...
Gespeichert in:
Veröffentlicht in: | Global change biology 2020-10, Vol.26 (10), p.5574-5587 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5587 |
---|---|
container_issue | 10 |
container_start_page | 5574 |
container_title | Global change biology |
container_volume | 26 |
creator | Schmidt, Katrin Birchill, Antony J. Atkinson, Angus Brewin, Robert J. W. Clark, James R. Hickman, Anna E. Johns, David G. Lohan, Maeve C. Milne, Angela Pardo, Silvia Polimene, Luca Smyth, Tim J. Tarran, Glen A. Widdicombe, Claire E. Woodward, E. Malcolm S. Ussher, Simon J. |
description | Continental margins are disproportionally important for global primary production, fisheries and CO2 uptake. However, across the Northeast Atlantic shelves, there has been an ongoing summertime decline of key biota—large diatoms, dinoflagellates and copepods—that traditionally fuel higher tropic levels such as fish, sea birds and marine mammals. Here, we combine multiple time series with in situ process studies to link these declines to summer nutrient stress and increasing proportions of picophytoplankton that can comprise up to 90% of the combined pico‐ and nanophytoplankton biomass in coastal areas. Among the pico‐fraction, it is the cyanobacterium Synechococcus that flourishes when iron and nitrogen resupply to surface waters are diminished. Our field data show how traits beyond small size give Synechococcus a competitive edge over pico‐ and nanoeukaryotes. Key is their ability to grow at low irradiances near the nutricline, which is aided by their superior light‐harvesting system and high affinity to iron. However, minute size and lack of essential biomolecules (e.g. omega‐3 polyunsaturated fatty acids and sterols) render Synechococcus poor primary producers to sustain shelf sea food webs efficiently. The combination of earlier spring blooms and lower summer food quantity and quality creates an increasing period of suboptimal feeding conditions for zooplankton at a time of year when their metabolic demand is highest. We suggest that this nutrition‐related mismatch has contributed to the widespread, ~50% decline in summer copepod abundance we observe over the last 60 years. With Synechococcus clades being prominent from the tropics to the Arctic and their abundances increasing worldwide, our study informs projections of future food web dynamics in coastal and shelf areas where droughts and stratification lead to increasing nutrient starvation of surface waters.
See also the Commentary on this article by Brander and Kiørboe, 26, 5356-5357.
Over the last ~60 years, key marine biota (large diatoms, dinoflagellates, copepods) have been declining across Northeast Atlantic shelves. We combine multiple time‐series with in situ process studies to link these declines to summer water column stratification, nutrient stress and increasing dominance of picophytoplankton. High structural investments for resource acquisition (light, iron) enable consistent, but relatively slow growth rates in the picocyanobacterium Synechococcus. This strategy proves disadvantageous |
doi_str_mv | 10.1111/gcb.15161 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2444793943</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2444793943</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3881-6207825cba05761d82169d2fb2f2f680ce35730bfb677e6bb64a78f20dc20afc3</originalsourceid><addsrcrecordid>eNp1kM1KAzEURoMotlYXvoAEXLmYNj8zmelSi9ZCwY2uQ5JJxpQ2qckMpTsfwWf0SUwddefd3Avf4btwALjEaIzTTBolx7jADB-BIaasyEhesePDXeQZRpgOwFmMK4QQJYidggElBWIVRkNQL5wKWkTrGri1yqu9cF4K1epgBYydUjpGaB2Mr3pt4E6kIELlXRus7FodYevh2rvm8_0jRRtovK_hTktY6yaIWrTWu3NwYsQ66oufPQIvD_fPs8ds-TRfzG6XmaJVhTNGUFmRQkmBipLhuiKYTWtiJDHEsAopTYuSImkkK0vNpGS5KCtDUK0IEkbREbjue7fBv3U6tnzlu-DSS07yPC-ndJrTRN30lAo-xqAN3wa7EWHPMeIHnzz55N8-E3v109jJja7_yF-BCZj0wM6u9f7_Jj6f3fWVX_ZqgJ4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2444793943</pqid></control><display><type>article</type><title>Increasing picocyanobacteria success in shelf waters contributes to long‐term food web degradation</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Schmidt, Katrin ; Birchill, Antony J. ; Atkinson, Angus ; Brewin, Robert J. W. ; Clark, James R. ; Hickman, Anna E. ; Johns, David G. ; Lohan, Maeve C. ; Milne, Angela ; Pardo, Silvia ; Polimene, Luca ; Smyth, Tim J. ; Tarran, Glen A. ; Widdicombe, Claire E. ; Woodward, E. Malcolm S. ; Ussher, Simon J.</creator><creatorcontrib>Schmidt, Katrin ; Birchill, Antony J. ; Atkinson, Angus ; Brewin, Robert J. W. ; Clark, James R. ; Hickman, Anna E. ; Johns, David G. ; Lohan, Maeve C. ; Milne, Angela ; Pardo, Silvia ; Polimene, Luca ; Smyth, Tim J. ; Tarran, Glen A. ; Widdicombe, Claire E. ; Woodward, E. Malcolm S. ; Ussher, Simon J.</creatorcontrib><description>Continental margins are disproportionally important for global primary production, fisheries and CO2 uptake. However, across the Northeast Atlantic shelves, there has been an ongoing summertime decline of key biota—large diatoms, dinoflagellates and copepods—that traditionally fuel higher tropic levels such as fish, sea birds and marine mammals. Here, we combine multiple time series with in situ process studies to link these declines to summer nutrient stress and increasing proportions of picophytoplankton that can comprise up to 90% of the combined pico‐ and nanophytoplankton biomass in coastal areas. Among the pico‐fraction, it is the cyanobacterium Synechococcus that flourishes when iron and nitrogen resupply to surface waters are diminished. Our field data show how traits beyond small size give Synechococcus a competitive edge over pico‐ and nanoeukaryotes. Key is their ability to grow at low irradiances near the nutricline, which is aided by their superior light‐harvesting system and high affinity to iron. However, minute size and lack of essential biomolecules (e.g. omega‐3 polyunsaturated fatty acids and sterols) render Synechococcus poor primary producers to sustain shelf sea food webs efficiently. The combination of earlier spring blooms and lower summer food quantity and quality creates an increasing period of suboptimal feeding conditions for zooplankton at a time of year when their metabolic demand is highest. We suggest that this nutrition‐related mismatch has contributed to the widespread, ~50% decline in summer copepod abundance we observe over the last 60 years. With Synechococcus clades being prominent from the tropics to the Arctic and their abundances increasing worldwide, our study informs projections of future food web dynamics in coastal and shelf areas where droughts and stratification lead to increasing nutrient starvation of surface waters.
See also the Commentary on this article by Brander and Kiørboe, 26, 5356-5357.
Over the last ~60 years, key marine biota (large diatoms, dinoflagellates, copepods) have been declining across Northeast Atlantic shelves. We combine multiple time‐series with in situ process studies to link these declines to summer water column stratification, nutrient stress and increasing dominance of picophytoplankton. High structural investments for resource acquisition (light, iron) enable consistent, but relatively slow growth rates in the picocyanobacterium Synechococcus. This strategy proves disadvantageous under nutrient replete conditions, but becomes increasingly beneficial when nutrients diminish. The resulting Synechococcus ‘blooms’ are of low value for higher trophic levels that rely on larger, omega‐3 enriched primary producers for efficient carbon transfer.</description><identifier>ISSN: 1354-1013</identifier><identifier>EISSN: 1365-2486</identifier><identifier>DOI: 10.1111/gcb.15161</identifier><identifier>PMID: 32506810</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Animals ; Aquatic birds ; Aquatic crustaceans ; Arctic Regions ; Biodegradation ; Biomass ; Biomolecules ; Biota ; Blooms ; Carbon dioxide ; climate change ; Coastal zone ; Continental margins ; copepods ; Diatoms ; Dinoflagellates ; Drought ; Fatty acids ; Fish ; Fisheries ; Food Chain ; Food chains ; Food quality ; Food webs ; Iron ; Marine fishes ; Marine mammals ; Marine microorganisms ; Mineral nutrients ; nitrate ; Nutrients ; Nutrition ; Phytoplankton ; picoeukaryotes ; Plankton ; Polar environments ; Polyunsaturated fatty acids ; Primary production ; Seabirds ; Seafood ; Seafoods ; Shelving ; Starvation ; Sterols ; Stratification ; Summer ; Surface water ; Synechococcus ; time series ; Tropical environments ; Western Channel Observatory ; Zooplankton</subject><ispartof>Global change biology, 2020-10, Vol.26 (10), p.5574-5587</ispartof><rights>2020 The Authors. published by John Wiley & Sons Ltd</rights><rights>2020 The Authors. Global Change Biology published by John Wiley & Sons Ltd.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3881-6207825cba05761d82169d2fb2f2f680ce35730bfb677e6bb64a78f20dc20afc3</citedby><cites>FETCH-LOGICAL-c3881-6207825cba05761d82169d2fb2f2f680ce35730bfb677e6bb64a78f20dc20afc3</cites><orcidid>0000-0003-3270-6764 ; 0000-0002-3304-8962 ; 0000-0002-3549-6937 ; 0000-0002-5931-4325 ; 0000-0002-1688-0212 ; 0000-0001-5134-8291 ; 0000-0002-7187-6689 ; 0000-0002-6488-623X ; 0000-0001-6724-9212 ; 0000-0002-1453-5781 ; 0000-0002-1924-5871 ; 0000-0001-9773-0058 ; 0000-0002-5340-3108 ; 0000-0003-0659-1422 ; 0000-0003-3695-5151</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fgcb.15161$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fgcb.15161$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32506810$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schmidt, Katrin</creatorcontrib><creatorcontrib>Birchill, Antony J.</creatorcontrib><creatorcontrib>Atkinson, Angus</creatorcontrib><creatorcontrib>Brewin, Robert J. W.</creatorcontrib><creatorcontrib>Clark, James R.</creatorcontrib><creatorcontrib>Hickman, Anna E.</creatorcontrib><creatorcontrib>Johns, David G.</creatorcontrib><creatorcontrib>Lohan, Maeve C.</creatorcontrib><creatorcontrib>Milne, Angela</creatorcontrib><creatorcontrib>Pardo, Silvia</creatorcontrib><creatorcontrib>Polimene, Luca</creatorcontrib><creatorcontrib>Smyth, Tim J.</creatorcontrib><creatorcontrib>Tarran, Glen A.</creatorcontrib><creatorcontrib>Widdicombe, Claire E.</creatorcontrib><creatorcontrib>Woodward, E. Malcolm S.</creatorcontrib><creatorcontrib>Ussher, Simon J.</creatorcontrib><title>Increasing picocyanobacteria success in shelf waters contributes to long‐term food web degradation</title><title>Global change biology</title><addtitle>Glob Chang Biol</addtitle><description>Continental margins are disproportionally important for global primary production, fisheries and CO2 uptake. However, across the Northeast Atlantic shelves, there has been an ongoing summertime decline of key biota—large diatoms, dinoflagellates and copepods—that traditionally fuel higher tropic levels such as fish, sea birds and marine mammals. Here, we combine multiple time series with in situ process studies to link these declines to summer nutrient stress and increasing proportions of picophytoplankton that can comprise up to 90% of the combined pico‐ and nanophytoplankton biomass in coastal areas. Among the pico‐fraction, it is the cyanobacterium Synechococcus that flourishes when iron and nitrogen resupply to surface waters are diminished. Our field data show how traits beyond small size give Synechococcus a competitive edge over pico‐ and nanoeukaryotes. Key is their ability to grow at low irradiances near the nutricline, which is aided by their superior light‐harvesting system and high affinity to iron. However, minute size and lack of essential biomolecules (e.g. omega‐3 polyunsaturated fatty acids and sterols) render Synechococcus poor primary producers to sustain shelf sea food webs efficiently. The combination of earlier spring blooms and lower summer food quantity and quality creates an increasing period of suboptimal feeding conditions for zooplankton at a time of year when their metabolic demand is highest. We suggest that this nutrition‐related mismatch has contributed to the widespread, ~50% decline in summer copepod abundance we observe over the last 60 years. With Synechococcus clades being prominent from the tropics to the Arctic and their abundances increasing worldwide, our study informs projections of future food web dynamics in coastal and shelf areas where droughts and stratification lead to increasing nutrient starvation of surface waters.
See also the Commentary on this article by Brander and Kiørboe, 26, 5356-5357.
Over the last ~60 years, key marine biota (large diatoms, dinoflagellates, copepods) have been declining across Northeast Atlantic shelves. We combine multiple time‐series with in situ process studies to link these declines to summer water column stratification, nutrient stress and increasing dominance of picophytoplankton. High structural investments for resource acquisition (light, iron) enable consistent, but relatively slow growth rates in the picocyanobacterium Synechococcus. This strategy proves disadvantageous under nutrient replete conditions, but becomes increasingly beneficial when nutrients diminish. The resulting Synechococcus ‘blooms’ are of low value for higher trophic levels that rely on larger, omega‐3 enriched primary producers for efficient carbon transfer.</description><subject>Animals</subject><subject>Aquatic birds</subject><subject>Aquatic crustaceans</subject><subject>Arctic Regions</subject><subject>Biodegradation</subject><subject>Biomass</subject><subject>Biomolecules</subject><subject>Biota</subject><subject>Blooms</subject><subject>Carbon dioxide</subject><subject>climate change</subject><subject>Coastal zone</subject><subject>Continental margins</subject><subject>copepods</subject><subject>Diatoms</subject><subject>Dinoflagellates</subject><subject>Drought</subject><subject>Fatty acids</subject><subject>Fish</subject><subject>Fisheries</subject><subject>Food Chain</subject><subject>Food chains</subject><subject>Food quality</subject><subject>Food webs</subject><subject>Iron</subject><subject>Marine fishes</subject><subject>Marine mammals</subject><subject>Marine microorganisms</subject><subject>Mineral nutrients</subject><subject>nitrate</subject><subject>Nutrients</subject><subject>Nutrition</subject><subject>Phytoplankton</subject><subject>picoeukaryotes</subject><subject>Plankton</subject><subject>Polar environments</subject><subject>Polyunsaturated fatty acids</subject><subject>Primary production</subject><subject>Seabirds</subject><subject>Seafood</subject><subject>Seafoods</subject><subject>Shelving</subject><subject>Starvation</subject><subject>Sterols</subject><subject>Stratification</subject><subject>Summer</subject><subject>Surface water</subject><subject>Synechococcus</subject><subject>time series</subject><subject>Tropical environments</subject><subject>Western Channel Observatory</subject><subject>Zooplankton</subject><issn>1354-1013</issn><issn>1365-2486</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNp1kM1KAzEURoMotlYXvoAEXLmYNj8zmelSi9ZCwY2uQ5JJxpQ2qckMpTsfwWf0SUwddefd3Avf4btwALjEaIzTTBolx7jADB-BIaasyEhesePDXeQZRpgOwFmMK4QQJYidggElBWIVRkNQL5wKWkTrGri1yqu9cF4K1epgBYydUjpGaB2Mr3pt4E6kIELlXRus7FodYevh2rvm8_0jRRtovK_hTktY6yaIWrTWu3NwYsQ66oufPQIvD_fPs8ds-TRfzG6XmaJVhTNGUFmRQkmBipLhuiKYTWtiJDHEsAopTYuSImkkK0vNpGS5KCtDUK0IEkbREbjue7fBv3U6tnzlu-DSS07yPC-ndJrTRN30lAo-xqAN3wa7EWHPMeIHnzz55N8-E3v109jJja7_yF-BCZj0wM6u9f7_Jj6f3fWVX_ZqgJ4</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>Schmidt, Katrin</creator><creator>Birchill, Antony J.</creator><creator>Atkinson, Angus</creator><creator>Brewin, Robert J. W.</creator><creator>Clark, James R.</creator><creator>Hickman, Anna E.</creator><creator>Johns, David G.</creator><creator>Lohan, Maeve C.</creator><creator>Milne, Angela</creator><creator>Pardo, Silvia</creator><creator>Polimene, Luca</creator><creator>Smyth, Tim J.</creator><creator>Tarran, Glen A.</creator><creator>Widdicombe, Claire E.</creator><creator>Woodward, E. Malcolm S.</creator><creator>Ussher, Simon J.</creator><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0003-3270-6764</orcidid><orcidid>https://orcid.org/0000-0002-3304-8962</orcidid><orcidid>https://orcid.org/0000-0002-3549-6937</orcidid><orcidid>https://orcid.org/0000-0002-5931-4325</orcidid><orcidid>https://orcid.org/0000-0002-1688-0212</orcidid><orcidid>https://orcid.org/0000-0001-5134-8291</orcidid><orcidid>https://orcid.org/0000-0002-7187-6689</orcidid><orcidid>https://orcid.org/0000-0002-6488-623X</orcidid><orcidid>https://orcid.org/0000-0001-6724-9212</orcidid><orcidid>https://orcid.org/0000-0002-1453-5781</orcidid><orcidid>https://orcid.org/0000-0002-1924-5871</orcidid><orcidid>https://orcid.org/0000-0001-9773-0058</orcidid><orcidid>https://orcid.org/0000-0002-5340-3108</orcidid><orcidid>https://orcid.org/0000-0003-0659-1422</orcidid><orcidid>https://orcid.org/0000-0003-3695-5151</orcidid></search><sort><creationdate>202010</creationdate><title>Increasing picocyanobacteria success in shelf waters contributes to long‐term food web degradation</title><author>Schmidt, Katrin ; Birchill, Antony J. ; Atkinson, Angus ; Brewin, Robert J. W. ; Clark, James R. ; Hickman, Anna E. ; Johns, David G. ; Lohan, Maeve C. ; Milne, Angela ; Pardo, Silvia ; Polimene, Luca ; Smyth, Tim J. ; Tarran, Glen A. ; Widdicombe, Claire E. ; Woodward, E. Malcolm S. ; Ussher, Simon J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3881-6207825cba05761d82169d2fb2f2f680ce35730bfb677e6bb64a78f20dc20afc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Aquatic birds</topic><topic>Aquatic crustaceans</topic><topic>Arctic Regions</topic><topic>Biodegradation</topic><topic>Biomass</topic><topic>Biomolecules</topic><topic>Biota</topic><topic>Blooms</topic><topic>Carbon dioxide</topic><topic>climate change</topic><topic>Coastal zone</topic><topic>Continental margins</topic><topic>copepods</topic><topic>Diatoms</topic><topic>Dinoflagellates</topic><topic>Drought</topic><topic>Fatty acids</topic><topic>Fish</topic><topic>Fisheries</topic><topic>Food Chain</topic><topic>Food chains</topic><topic>Food quality</topic><topic>Food webs</topic><topic>Iron</topic><topic>Marine fishes</topic><topic>Marine mammals</topic><topic>Marine microorganisms</topic><topic>Mineral nutrients</topic><topic>nitrate</topic><topic>Nutrients</topic><topic>Nutrition</topic><topic>Phytoplankton</topic><topic>picoeukaryotes</topic><topic>Plankton</topic><topic>Polar environments</topic><topic>Polyunsaturated fatty acids</topic><topic>Primary production</topic><topic>Seabirds</topic><topic>Seafood</topic><topic>Seafoods</topic><topic>Shelving</topic><topic>Starvation</topic><topic>Sterols</topic><topic>Stratification</topic><topic>Summer</topic><topic>Surface water</topic><topic>Synechococcus</topic><topic>time series</topic><topic>Tropical environments</topic><topic>Western Channel Observatory</topic><topic>Zooplankton</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schmidt, Katrin</creatorcontrib><creatorcontrib>Birchill, Antony J.</creatorcontrib><creatorcontrib>Atkinson, Angus</creatorcontrib><creatorcontrib>Brewin, Robert J. W.</creatorcontrib><creatorcontrib>Clark, James R.</creatorcontrib><creatorcontrib>Hickman, Anna E.</creatorcontrib><creatorcontrib>Johns, David G.</creatorcontrib><creatorcontrib>Lohan, Maeve C.</creatorcontrib><creatorcontrib>Milne, Angela</creatorcontrib><creatorcontrib>Pardo, Silvia</creatorcontrib><creatorcontrib>Polimene, Luca</creatorcontrib><creatorcontrib>Smyth, Tim J.</creatorcontrib><creatorcontrib>Tarran, Glen A.</creatorcontrib><creatorcontrib>Widdicombe, Claire E.</creatorcontrib><creatorcontrib>Woodward, E. Malcolm S.</creatorcontrib><creatorcontrib>Ussher, Simon J.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Global change biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schmidt, Katrin</au><au>Birchill, Antony J.</au><au>Atkinson, Angus</au><au>Brewin, Robert J. W.</au><au>Clark, James R.</au><au>Hickman, Anna E.</au><au>Johns, David G.</au><au>Lohan, Maeve C.</au><au>Milne, Angela</au><au>Pardo, Silvia</au><au>Polimene, Luca</au><au>Smyth, Tim J.</au><au>Tarran, Glen A.</au><au>Widdicombe, Claire E.</au><au>Woodward, E. Malcolm S.</au><au>Ussher, Simon J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Increasing picocyanobacteria success in shelf waters contributes to long‐term food web degradation</atitle><jtitle>Global change biology</jtitle><addtitle>Glob Chang Biol</addtitle><date>2020-10</date><risdate>2020</risdate><volume>26</volume><issue>10</issue><spage>5574</spage><epage>5587</epage><pages>5574-5587</pages><issn>1354-1013</issn><eissn>1365-2486</eissn><abstract>Continental margins are disproportionally important for global primary production, fisheries and CO2 uptake. However, across the Northeast Atlantic shelves, there has been an ongoing summertime decline of key biota—large diatoms, dinoflagellates and copepods—that traditionally fuel higher tropic levels such as fish, sea birds and marine mammals. Here, we combine multiple time series with in situ process studies to link these declines to summer nutrient stress and increasing proportions of picophytoplankton that can comprise up to 90% of the combined pico‐ and nanophytoplankton biomass in coastal areas. Among the pico‐fraction, it is the cyanobacterium Synechococcus that flourishes when iron and nitrogen resupply to surface waters are diminished. Our field data show how traits beyond small size give Synechococcus a competitive edge over pico‐ and nanoeukaryotes. Key is their ability to grow at low irradiances near the nutricline, which is aided by their superior light‐harvesting system and high affinity to iron. However, minute size and lack of essential biomolecules (e.g. omega‐3 polyunsaturated fatty acids and sterols) render Synechococcus poor primary producers to sustain shelf sea food webs efficiently. The combination of earlier spring blooms and lower summer food quantity and quality creates an increasing period of suboptimal feeding conditions for zooplankton at a time of year when their metabolic demand is highest. We suggest that this nutrition‐related mismatch has contributed to the widespread, ~50% decline in summer copepod abundance we observe over the last 60 years. With Synechococcus clades being prominent from the tropics to the Arctic and their abundances increasing worldwide, our study informs projections of future food web dynamics in coastal and shelf areas where droughts and stratification lead to increasing nutrient starvation of surface waters.
See also the Commentary on this article by Brander and Kiørboe, 26, 5356-5357.
Over the last ~60 years, key marine biota (large diatoms, dinoflagellates, copepods) have been declining across Northeast Atlantic shelves. We combine multiple time‐series with in situ process studies to link these declines to summer water column stratification, nutrient stress and increasing dominance of picophytoplankton. High structural investments for resource acquisition (light, iron) enable consistent, but relatively slow growth rates in the picocyanobacterium Synechococcus. This strategy proves disadvantageous under nutrient replete conditions, but becomes increasingly beneficial when nutrients diminish. The resulting Synechococcus ‘blooms’ are of low value for higher trophic levels that rely on larger, omega‐3 enriched primary producers for efficient carbon transfer.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>32506810</pmid><doi>10.1111/gcb.15161</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-3270-6764</orcidid><orcidid>https://orcid.org/0000-0002-3304-8962</orcidid><orcidid>https://orcid.org/0000-0002-3549-6937</orcidid><orcidid>https://orcid.org/0000-0002-5931-4325</orcidid><orcidid>https://orcid.org/0000-0002-1688-0212</orcidid><orcidid>https://orcid.org/0000-0001-5134-8291</orcidid><orcidid>https://orcid.org/0000-0002-7187-6689</orcidid><orcidid>https://orcid.org/0000-0002-6488-623X</orcidid><orcidid>https://orcid.org/0000-0001-6724-9212</orcidid><orcidid>https://orcid.org/0000-0002-1453-5781</orcidid><orcidid>https://orcid.org/0000-0002-1924-5871</orcidid><orcidid>https://orcid.org/0000-0001-9773-0058</orcidid><orcidid>https://orcid.org/0000-0002-5340-3108</orcidid><orcidid>https://orcid.org/0000-0003-0659-1422</orcidid><orcidid>https://orcid.org/0000-0003-3695-5151</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1354-1013 |
ispartof | Global change biology, 2020-10, Vol.26 (10), p.5574-5587 |
issn | 1354-1013 1365-2486 |
language | eng |
recordid | cdi_proquest_journals_2444793943 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Animals Aquatic birds Aquatic crustaceans Arctic Regions Biodegradation Biomass Biomolecules Biota Blooms Carbon dioxide climate change Coastal zone Continental margins copepods Diatoms Dinoflagellates Drought Fatty acids Fish Fisheries Food Chain Food chains Food quality Food webs Iron Marine fishes Marine mammals Marine microorganisms Mineral nutrients nitrate Nutrients Nutrition Phytoplankton picoeukaryotes Plankton Polar environments Polyunsaturated fatty acids Primary production Seabirds Seafood Seafoods Shelving Starvation Sterols Stratification Summer Surface water Synechococcus time series Tropical environments Western Channel Observatory Zooplankton |
title | Increasing picocyanobacteria success in shelf waters contributes to long‐term food web degradation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T03%3A01%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Increasing%20picocyanobacteria%20success%20in%20shelf%20waters%20contributes%20to%20long%E2%80%90term%20food%20web%20degradation&rft.jtitle=Global%20change%20biology&rft.au=Schmidt,%20Katrin&rft.date=2020-10&rft.volume=26&rft.issue=10&rft.spage=5574&rft.epage=5587&rft.pages=5574-5587&rft.issn=1354-1013&rft.eissn=1365-2486&rft_id=info:doi/10.1111/gcb.15161&rft_dat=%3Cproquest_cross%3E2444793943%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2444793943&rft_id=info:pmid/32506810&rfr_iscdi=true |