A quasi in-situ study on the deformation mechanism in a 2.2Cr heat resistant steel

We elucidate here the micromechanism of deformation at elevated temperatures in a newly designed 2.2Cr–bainitic high strength and heat resistant steel using a quasi in–situ approach, which enabled us to describe the evolution of microstructure and corresponding mechanisms concerning plastic deformat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2020-06, Vol.788, p.139557, Article 139557
Hauptverfasser: Cheng, L., Chen, Y.L., Gu, X.F., Yu, W., Cai, Q.W., Suzuki, K., Miura, H., Misra, R.D.K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 139557
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 788
creator Cheng, L.
Chen, Y.L.
Gu, X.F.
Yu, W.
Cai, Q.W.
Suzuki, K.
Miura, H.
Misra, R.D.K.
description We elucidate here the micromechanism of deformation at elevated temperatures in a newly designed 2.2Cr–bainitic high strength and heat resistant steel using a quasi in–situ approach, which enabled us to describe the evolution of microstructure and corresponding mechanisms concerning plastic deformation at elevated temperatures. A new mechanism referred as dynamic precipitation (M7C3)−assisted continuous dynamic recrystallization process is proposed that illustrates the underlying reason for the ultrahigh strength (>400 MPa at 650 °C) of newly designed heat resistant steel. The study revealed the interactions between grain boundary sliding, dynamic recrystallization and shearing process, and the critical stress required for transition to corresponding deformation mechanisms are discussed quantitatively. It is proposed that the newly defined mechanism can enhance strain–hardening ability at high temperature, which is mainly attributed to dynamic precipitation at triple junctions of (sub)-grain boundaries. The study provides a new pathway to stretch the limits of high–temperature strength of heat–resistant steels.
doi_str_mv 10.1016/j.msea.2020.139557
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2444681551</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509320306353</els_id><sourcerecordid>2444681551</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-a731f34fb40d6ea4ccf522d32f36148c1a2b7499882aef17dd2ff2a52c1ae5343</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPA86753A_wUopfUBBEzyFNJjRLd7dNskL_vSnr2VOYzPvMDA9C95SUlNDqsSv7CLpkhOUP3kpZX6AFbWpeiJZXl2hBWkYLSVp-jW5i7AghVBC5QJ8rfJx09NgPRfRpwjFN9oTHAacdYAtuDL1OPtc9mJ0efOxzFGvMSrYOeAc64QDRx6SHlGGA_S26cnof4e7vXaLvl-ev9Vux-Xh9X682heGsSYWuOXVcuK0gtgItjHGSMcuZ4xUVjaGabWvRtk3DNDhaW8ucY1qy3AHJBV-ih3nuIYzHCWJS3TiFIa9UTAhRNVRKmlNsTpkwxhjAqUPwvQ4nRYk6u1OdOrtTZ3dqdpehpxmCfP-Ph6Ci8TAYsD6AScqO_j_8F8FEdsI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2444681551</pqid></control><display><type>article</type><title>A quasi in-situ study on the deformation mechanism in a 2.2Cr heat resistant steel</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Cheng, L. ; Chen, Y.L. ; Gu, X.F. ; Yu, W. ; Cai, Q.W. ; Suzuki, K. ; Miura, H. ; Misra, R.D.K.</creator><creatorcontrib>Cheng, L. ; Chen, Y.L. ; Gu, X.F. ; Yu, W. ; Cai, Q.W. ; Suzuki, K. ; Miura, H. ; Misra, R.D.K.</creatorcontrib><description>We elucidate here the micromechanism of deformation at elevated temperatures in a newly designed 2.2Cr–bainitic high strength and heat resistant steel using a quasi in–situ approach, which enabled us to describe the evolution of microstructure and corresponding mechanisms concerning plastic deformation at elevated temperatures. A new mechanism referred as dynamic precipitation (M7C3)−assisted continuous dynamic recrystallization process is proposed that illustrates the underlying reason for the ultrahigh strength (&gt;400 MPa at 650 °C) of newly designed heat resistant steel. The study revealed the interactions between grain boundary sliding, dynamic recrystallization and shearing process, and the critical stress required for transition to corresponding deformation mechanisms are discussed quantitatively. It is proposed that the newly defined mechanism can enhance strain–hardening ability at high temperature, which is mainly attributed to dynamic precipitation at triple junctions of (sub)-grain boundaries. The study provides a new pathway to stretch the limits of high–temperature strength of heat–resistant steels.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2020.139557</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Deformation mechanism ; Deformation mechanisms ; Dynamic recrystallization ; Grain boundary sliding ; Heat resistant steels ; High temperature ; Plastic deformation ; Precipitation ; Shearing ; Steel</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 2020-06, Vol.788, p.139557, Article 139557</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jun 24, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-a731f34fb40d6ea4ccf522d32f36148c1a2b7499882aef17dd2ff2a52c1ae5343</citedby><cites>FETCH-LOGICAL-c328t-a731f34fb40d6ea4ccf522d32f36148c1a2b7499882aef17dd2ff2a52c1ae5343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0921509320306353$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Cheng, L.</creatorcontrib><creatorcontrib>Chen, Y.L.</creatorcontrib><creatorcontrib>Gu, X.F.</creatorcontrib><creatorcontrib>Yu, W.</creatorcontrib><creatorcontrib>Cai, Q.W.</creatorcontrib><creatorcontrib>Suzuki, K.</creatorcontrib><creatorcontrib>Miura, H.</creatorcontrib><creatorcontrib>Misra, R.D.K.</creatorcontrib><title>A quasi in-situ study on the deformation mechanism in a 2.2Cr heat resistant steel</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>We elucidate here the micromechanism of deformation at elevated temperatures in a newly designed 2.2Cr–bainitic high strength and heat resistant steel using a quasi in–situ approach, which enabled us to describe the evolution of microstructure and corresponding mechanisms concerning plastic deformation at elevated temperatures. A new mechanism referred as dynamic precipitation (M7C3)−assisted continuous dynamic recrystallization process is proposed that illustrates the underlying reason for the ultrahigh strength (&gt;400 MPa at 650 °C) of newly designed heat resistant steel. The study revealed the interactions between grain boundary sliding, dynamic recrystallization and shearing process, and the critical stress required for transition to corresponding deformation mechanisms are discussed quantitatively. It is proposed that the newly defined mechanism can enhance strain–hardening ability at high temperature, which is mainly attributed to dynamic precipitation at triple junctions of (sub)-grain boundaries. The study provides a new pathway to stretch the limits of high–temperature strength of heat–resistant steels.</description><subject>Deformation mechanism</subject><subject>Deformation mechanisms</subject><subject>Dynamic recrystallization</subject><subject>Grain boundary sliding</subject><subject>Heat resistant steels</subject><subject>High temperature</subject><subject>Plastic deformation</subject><subject>Precipitation</subject><subject>Shearing</subject><subject>Steel</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wFPA86753A_wUopfUBBEzyFNJjRLd7dNskL_vSnr2VOYzPvMDA9C95SUlNDqsSv7CLpkhOUP3kpZX6AFbWpeiJZXl2hBWkYLSVp-jW5i7AghVBC5QJ8rfJx09NgPRfRpwjFN9oTHAacdYAtuDL1OPtc9mJ0efOxzFGvMSrYOeAc64QDRx6SHlGGA_S26cnof4e7vXaLvl-ev9Vux-Xh9X682heGsSYWuOXVcuK0gtgItjHGSMcuZ4xUVjaGabWvRtk3DNDhaW8ucY1qy3AHJBV-ih3nuIYzHCWJS3TiFIa9UTAhRNVRKmlNsTpkwxhjAqUPwvQ4nRYk6u1OdOrtTZ3dqdpehpxmCfP-Ph6Ci8TAYsD6AScqO_j_8F8FEdsI</recordid><startdate>20200624</startdate><enddate>20200624</enddate><creator>Cheng, L.</creator><creator>Chen, Y.L.</creator><creator>Gu, X.F.</creator><creator>Yu, W.</creator><creator>Cai, Q.W.</creator><creator>Suzuki, K.</creator><creator>Miura, H.</creator><creator>Misra, R.D.K.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20200624</creationdate><title>A quasi in-situ study on the deformation mechanism in a 2.2Cr heat resistant steel</title><author>Cheng, L. ; Chen, Y.L. ; Gu, X.F. ; Yu, W. ; Cai, Q.W. ; Suzuki, K. ; Miura, H. ; Misra, R.D.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-a731f34fb40d6ea4ccf522d32f36148c1a2b7499882aef17dd2ff2a52c1ae5343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Deformation mechanism</topic><topic>Deformation mechanisms</topic><topic>Dynamic recrystallization</topic><topic>Grain boundary sliding</topic><topic>Heat resistant steels</topic><topic>High temperature</topic><topic>Plastic deformation</topic><topic>Precipitation</topic><topic>Shearing</topic><topic>Steel</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, L.</creatorcontrib><creatorcontrib>Chen, Y.L.</creatorcontrib><creatorcontrib>Gu, X.F.</creatorcontrib><creatorcontrib>Yu, W.</creatorcontrib><creatorcontrib>Cai, Q.W.</creatorcontrib><creatorcontrib>Suzuki, K.</creatorcontrib><creatorcontrib>Miura, H.</creatorcontrib><creatorcontrib>Misra, R.D.K.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, L.</au><au>Chen, Y.L.</au><au>Gu, X.F.</au><au>Yu, W.</au><au>Cai, Q.W.</au><au>Suzuki, K.</au><au>Miura, H.</au><au>Misra, R.D.K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A quasi in-situ study on the deformation mechanism in a 2.2Cr heat resistant steel</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2020-06-24</date><risdate>2020</risdate><volume>788</volume><spage>139557</spage><pages>139557-</pages><artnum>139557</artnum><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>We elucidate here the micromechanism of deformation at elevated temperatures in a newly designed 2.2Cr–bainitic high strength and heat resistant steel using a quasi in–situ approach, which enabled us to describe the evolution of microstructure and corresponding mechanisms concerning plastic deformation at elevated temperatures. A new mechanism referred as dynamic precipitation (M7C3)−assisted continuous dynamic recrystallization process is proposed that illustrates the underlying reason for the ultrahigh strength (&gt;400 MPa at 650 °C) of newly designed heat resistant steel. The study revealed the interactions between grain boundary sliding, dynamic recrystallization and shearing process, and the critical stress required for transition to corresponding deformation mechanisms are discussed quantitatively. It is proposed that the newly defined mechanism can enhance strain–hardening ability at high temperature, which is mainly attributed to dynamic precipitation at triple junctions of (sub)-grain boundaries. The study provides a new pathway to stretch the limits of high–temperature strength of heat–resistant steels.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2020.139557</doi></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2020-06, Vol.788, p.139557, Article 139557
issn 0921-5093
1873-4936
language eng
recordid cdi_proquest_journals_2444681551
source Elsevier ScienceDirect Journals Complete
subjects Deformation mechanism
Deformation mechanisms
Dynamic recrystallization
Grain boundary sliding
Heat resistant steels
High temperature
Plastic deformation
Precipitation
Shearing
Steel
title A quasi in-situ study on the deformation mechanism in a 2.2Cr heat resistant steel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A38%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20quasi%20in-situ%20study%20on%20the%20deformation%20mechanism%20in%20a%202.2Cr%20heat%20resistant%20steel&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Cheng,%20L.&rft.date=2020-06-24&rft.volume=788&rft.spage=139557&rft.pages=139557-&rft.artnum=139557&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2020.139557&rft_dat=%3Cproquest_cross%3E2444681551%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2444681551&rft_id=info:pmid/&rft_els_id=S0921509320306353&rfr_iscdi=true