A quasi in-situ study on the deformation mechanism in a 2.2Cr heat resistant steel
We elucidate here the micromechanism of deformation at elevated temperatures in a newly designed 2.2Cr–bainitic high strength and heat resistant steel using a quasi in–situ approach, which enabled us to describe the evolution of microstructure and corresponding mechanisms concerning plastic deformat...
Gespeichert in:
Veröffentlicht in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2020-06, Vol.788, p.139557, Article 139557 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 139557 |
container_title | Materials science & engineering. A, Structural materials : properties, microstructure and processing |
container_volume | 788 |
creator | Cheng, L. Chen, Y.L. Gu, X.F. Yu, W. Cai, Q.W. Suzuki, K. Miura, H. Misra, R.D.K. |
description | We elucidate here the micromechanism of deformation at elevated temperatures in a newly designed 2.2Cr–bainitic high strength and heat resistant steel using a quasi in–situ approach, which enabled us to describe the evolution of microstructure and corresponding mechanisms concerning plastic deformation at elevated temperatures. A new mechanism referred as dynamic precipitation (M7C3)−assisted continuous dynamic recrystallization process is proposed that illustrates the underlying reason for the ultrahigh strength (>400 MPa at 650 °C) of newly designed heat resistant steel. The study revealed the interactions between grain boundary sliding, dynamic recrystallization and shearing process, and the critical stress required for transition to corresponding deformation mechanisms are discussed quantitatively. It is proposed that the newly defined mechanism can enhance strain–hardening ability at high temperature, which is mainly attributed to dynamic precipitation at triple junctions of (sub)-grain boundaries. The study provides a new pathway to stretch the limits of high–temperature strength of heat–resistant steels. |
doi_str_mv | 10.1016/j.msea.2020.139557 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2444681551</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509320306353</els_id><sourcerecordid>2444681551</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-a731f34fb40d6ea4ccf522d32f36148c1a2b7499882aef17dd2ff2a52c1ae5343</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPA86753A_wUopfUBBEzyFNJjRLd7dNskL_vSnr2VOYzPvMDA9C95SUlNDqsSv7CLpkhOUP3kpZX6AFbWpeiJZXl2hBWkYLSVp-jW5i7AghVBC5QJ8rfJx09NgPRfRpwjFN9oTHAacdYAtuDL1OPtc9mJ0efOxzFGvMSrYOeAc64QDRx6SHlGGA_S26cnof4e7vXaLvl-ev9Vux-Xh9X682heGsSYWuOXVcuK0gtgItjHGSMcuZ4xUVjaGabWvRtk3DNDhaW8ucY1qy3AHJBV-ih3nuIYzHCWJS3TiFIa9UTAhRNVRKmlNsTpkwxhjAqUPwvQ4nRYk6u1OdOrtTZ3dqdpehpxmCfP-Ph6Ci8TAYsD6AScqO_j_8F8FEdsI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2444681551</pqid></control><display><type>article</type><title>A quasi in-situ study on the deformation mechanism in a 2.2Cr heat resistant steel</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Cheng, L. ; Chen, Y.L. ; Gu, X.F. ; Yu, W. ; Cai, Q.W. ; Suzuki, K. ; Miura, H. ; Misra, R.D.K.</creator><creatorcontrib>Cheng, L. ; Chen, Y.L. ; Gu, X.F. ; Yu, W. ; Cai, Q.W. ; Suzuki, K. ; Miura, H. ; Misra, R.D.K.</creatorcontrib><description>We elucidate here the micromechanism of deformation at elevated temperatures in a newly designed 2.2Cr–bainitic high strength and heat resistant steel using a quasi in–situ approach, which enabled us to describe the evolution of microstructure and corresponding mechanisms concerning plastic deformation at elevated temperatures. A new mechanism referred as dynamic precipitation (M7C3)−assisted continuous dynamic recrystallization process is proposed that illustrates the underlying reason for the ultrahigh strength (>400 MPa at 650 °C) of newly designed heat resistant steel. The study revealed the interactions between grain boundary sliding, dynamic recrystallization and shearing process, and the critical stress required for transition to corresponding deformation mechanisms are discussed quantitatively. It is proposed that the newly defined mechanism can enhance strain–hardening ability at high temperature, which is mainly attributed to dynamic precipitation at triple junctions of (sub)-grain boundaries. The study provides a new pathway to stretch the limits of high–temperature strength of heat–resistant steels.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2020.139557</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Deformation mechanism ; Deformation mechanisms ; Dynamic recrystallization ; Grain boundary sliding ; Heat resistant steels ; High temperature ; Plastic deformation ; Precipitation ; Shearing ; Steel</subject><ispartof>Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2020-06, Vol.788, p.139557, Article 139557</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jun 24, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-a731f34fb40d6ea4ccf522d32f36148c1a2b7499882aef17dd2ff2a52c1ae5343</citedby><cites>FETCH-LOGICAL-c328t-a731f34fb40d6ea4ccf522d32f36148c1a2b7499882aef17dd2ff2a52c1ae5343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0921509320306353$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Cheng, L.</creatorcontrib><creatorcontrib>Chen, Y.L.</creatorcontrib><creatorcontrib>Gu, X.F.</creatorcontrib><creatorcontrib>Yu, W.</creatorcontrib><creatorcontrib>Cai, Q.W.</creatorcontrib><creatorcontrib>Suzuki, K.</creatorcontrib><creatorcontrib>Miura, H.</creatorcontrib><creatorcontrib>Misra, R.D.K.</creatorcontrib><title>A quasi in-situ study on the deformation mechanism in a 2.2Cr heat resistant steel</title><title>Materials science & engineering. A, Structural materials : properties, microstructure and processing</title><description>We elucidate here the micromechanism of deformation at elevated temperatures in a newly designed 2.2Cr–bainitic high strength and heat resistant steel using a quasi in–situ approach, which enabled us to describe the evolution of microstructure and corresponding mechanisms concerning plastic deformation at elevated temperatures. A new mechanism referred as dynamic precipitation (M7C3)−assisted continuous dynamic recrystallization process is proposed that illustrates the underlying reason for the ultrahigh strength (>400 MPa at 650 °C) of newly designed heat resistant steel. The study revealed the interactions between grain boundary sliding, dynamic recrystallization and shearing process, and the critical stress required for transition to corresponding deformation mechanisms are discussed quantitatively. It is proposed that the newly defined mechanism can enhance strain–hardening ability at high temperature, which is mainly attributed to dynamic precipitation at triple junctions of (sub)-grain boundaries. The study provides a new pathway to stretch the limits of high–temperature strength of heat–resistant steels.</description><subject>Deformation mechanism</subject><subject>Deformation mechanisms</subject><subject>Dynamic recrystallization</subject><subject>Grain boundary sliding</subject><subject>Heat resistant steels</subject><subject>High temperature</subject><subject>Plastic deformation</subject><subject>Precipitation</subject><subject>Shearing</subject><subject>Steel</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wFPA86753A_wUopfUBBEzyFNJjRLd7dNskL_vSnr2VOYzPvMDA9C95SUlNDqsSv7CLpkhOUP3kpZX6AFbWpeiJZXl2hBWkYLSVp-jW5i7AghVBC5QJ8rfJx09NgPRfRpwjFN9oTHAacdYAtuDL1OPtc9mJ0efOxzFGvMSrYOeAc64QDRx6SHlGGA_S26cnof4e7vXaLvl-ev9Vux-Xh9X682heGsSYWuOXVcuK0gtgItjHGSMcuZ4xUVjaGabWvRtk3DNDhaW8ucY1qy3AHJBV-ih3nuIYzHCWJS3TiFIa9UTAhRNVRKmlNsTpkwxhjAqUPwvQ4nRYk6u1OdOrtTZ3dqdpehpxmCfP-Ph6Ci8TAYsD6AScqO_j_8F8FEdsI</recordid><startdate>20200624</startdate><enddate>20200624</enddate><creator>Cheng, L.</creator><creator>Chen, Y.L.</creator><creator>Gu, X.F.</creator><creator>Yu, W.</creator><creator>Cai, Q.W.</creator><creator>Suzuki, K.</creator><creator>Miura, H.</creator><creator>Misra, R.D.K.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20200624</creationdate><title>A quasi in-situ study on the deformation mechanism in a 2.2Cr heat resistant steel</title><author>Cheng, L. ; Chen, Y.L. ; Gu, X.F. ; Yu, W. ; Cai, Q.W. ; Suzuki, K. ; Miura, H. ; Misra, R.D.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-a731f34fb40d6ea4ccf522d32f36148c1a2b7499882aef17dd2ff2a52c1ae5343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Deformation mechanism</topic><topic>Deformation mechanisms</topic><topic>Dynamic recrystallization</topic><topic>Grain boundary sliding</topic><topic>Heat resistant steels</topic><topic>High temperature</topic><topic>Plastic deformation</topic><topic>Precipitation</topic><topic>Shearing</topic><topic>Steel</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, L.</creatorcontrib><creatorcontrib>Chen, Y.L.</creatorcontrib><creatorcontrib>Gu, X.F.</creatorcontrib><creatorcontrib>Yu, W.</creatorcontrib><creatorcontrib>Cai, Q.W.</creatorcontrib><creatorcontrib>Suzuki, K.</creatorcontrib><creatorcontrib>Miura, H.</creatorcontrib><creatorcontrib>Misra, R.D.K.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, L.</au><au>Chen, Y.L.</au><au>Gu, X.F.</au><au>Yu, W.</au><au>Cai, Q.W.</au><au>Suzuki, K.</au><au>Miura, H.</au><au>Misra, R.D.K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A quasi in-situ study on the deformation mechanism in a 2.2Cr heat resistant steel</atitle><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2020-06-24</date><risdate>2020</risdate><volume>788</volume><spage>139557</spage><pages>139557-</pages><artnum>139557</artnum><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>We elucidate here the micromechanism of deformation at elevated temperatures in a newly designed 2.2Cr–bainitic high strength and heat resistant steel using a quasi in–situ approach, which enabled us to describe the evolution of microstructure and corresponding mechanisms concerning plastic deformation at elevated temperatures. A new mechanism referred as dynamic precipitation (M7C3)−assisted continuous dynamic recrystallization process is proposed that illustrates the underlying reason for the ultrahigh strength (>400 MPa at 650 °C) of newly designed heat resistant steel. The study revealed the interactions between grain boundary sliding, dynamic recrystallization and shearing process, and the critical stress required for transition to corresponding deformation mechanisms are discussed quantitatively. It is proposed that the newly defined mechanism can enhance strain–hardening ability at high temperature, which is mainly attributed to dynamic precipitation at triple junctions of (sub)-grain boundaries. The study provides a new pathway to stretch the limits of high–temperature strength of heat–resistant steels.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2020.139557</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-5093 |
ispartof | Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2020-06, Vol.788, p.139557, Article 139557 |
issn | 0921-5093 1873-4936 |
language | eng |
recordid | cdi_proquest_journals_2444681551 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Deformation mechanism Deformation mechanisms Dynamic recrystallization Grain boundary sliding Heat resistant steels High temperature Plastic deformation Precipitation Shearing Steel |
title | A quasi in-situ study on the deformation mechanism in a 2.2Cr heat resistant steel |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A38%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20quasi%20in-situ%20study%20on%20the%20deformation%20mechanism%20in%20a%202.2Cr%20heat%20resistant%20steel&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Cheng,%20L.&rft.date=2020-06-24&rft.volume=788&rft.spage=139557&rft.pages=139557-&rft.artnum=139557&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2020.139557&rft_dat=%3Cproquest_cross%3E2444681551%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2444681551&rft_id=info:pmid/&rft_els_id=S0921509320306353&rfr_iscdi=true |