Differences in CO2 emissions of solar PV production among technologies and regions: Application to China, EU and USA
A widespread implicit assumption is that renewable energy options are approximately low-carbon. However, production and life cycles of such technologies tend to produce CO2 emissions. To minimize life-cycle emissions, one should account for such emissions and implement adequate policies to encourage...
Gespeichert in:
Veröffentlicht in: | Energy policy 2020-03, Vol.138, p.1-11, Article 111234 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Energy policy |
container_volume | 138 |
creator | Liu, Feng van den Bergh, Jeroen C.J.M. |
description | A widespread implicit assumption is that renewable energy options are approximately low-carbon. However, production and life cycles of such technologies tend to produce CO2 emissions. To minimize life-cycle emissions, one should account for such emissions and implement adequate policies to encourage innovation and adoption of well-performing technologies in this respect. We develop a framework to analyse this issue, grounded in the concepts of ‘energy return on energy invested’ (EROI) and ‘net energy return on carbon invested’ (EROC). Applying these to the main PV technologies and production regions – namely China, EU and USA – displays considerable discrepancies. We conditionally predict the development of average EROI and EROC over time under business-as-usual and low-carbon electricity generation scenarios. A main policy lesson is that without a systemic policy instrument, such as carbon pricing, incentives for low-carbon production of renewable energy options are too weak, which likely will delay a complete transition to a low-carbon economy.
•Framework developed around EROI and EROC to study lifecycle performance of solar PV.•CdTe turns out to have the highest and mono-Si the lowest EROI and EROC values.•The EU shows a better performance on EROI and EROC than China and USA.•We predict average EROI and EROC under BAU and low-carbon electricity scenarios.•Results show need for systemic policy instruments to stimulate transition to low-carbon economy. |
doi_str_mv | 10.1016/j.enpol.2019.111234 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2444676283</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0301421519308158</els_id><sourcerecordid>2444676283</sourcerecordid><originalsourceid>FETCH-LOGICAL-c503t-91f8762348826ed4dcc8c7699a0995cb225e4a3a8f22dc327529e4d6a665110b3</originalsourceid><addsrcrecordid>eNp9kVtLwzAYhoMoOKe_wJuAt7bm1LQVvBhzHmAwQedtyNJ0pnRJTTrBf2-6er2rD8LzfIe8AFxjlGKE-V2Tatu5NiUIlynGmFB2Aia4yGnC8zw_BRNEEU4Ywdk5uAihQQixomQT0D-autZeW6UDNBbOVwTqnQnBOBugq2FwrfTw7RN23lV71cd3KHfObmGv1Zd1rduaqEpbQa-3g3UPZ13XGiUPbO_g_MtYeQsX6wO1fp9dgrNatkFf_dcpWD8tPuYvyXL1_DqfLROVIdonJa6LnMdbioJwXbFKqULlvCwlKstMbQjJNJNUFjUhlaIkz0ipWcUl5xnGaEOn4GbsG3f_3uvQi8btvY0jBWGM8di8oMcpihDP4gKRoiOlvAvB61p03uyk_xUYiSEE0YhDCGIIQYwhROthtHQ888doL4Iyw2dXxmvVi8qZo_4f2fSOzA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2430065488</pqid></control><display><type>article</type><title>Differences in CO2 emissions of solar PV production among technologies and regions: Application to China, EU and USA</title><source>Elsevier ScienceDirect Journals Complete</source><source>PAIS Index</source><creator>Liu, Feng ; van den Bergh, Jeroen C.J.M.</creator><creatorcontrib>Liu, Feng ; van den Bergh, Jeroen C.J.M.</creatorcontrib><description>A widespread implicit assumption is that renewable energy options are approximately low-carbon. However, production and life cycles of such technologies tend to produce CO2 emissions. To minimize life-cycle emissions, one should account for such emissions and implement adequate policies to encourage innovation and adoption of well-performing technologies in this respect. We develop a framework to analyse this issue, grounded in the concepts of ‘energy return on energy invested’ (EROI) and ‘net energy return on carbon invested’ (EROC). Applying these to the main PV technologies and production regions – namely China, EU and USA – displays considerable discrepancies. We conditionally predict the development of average EROI and EROC over time under business-as-usual and low-carbon electricity generation scenarios. A main policy lesson is that without a systemic policy instrument, such as carbon pricing, incentives for low-carbon production of renewable energy options are too weak, which likely will delay a complete transition to a low-carbon economy.
•Framework developed around EROI and EROC to study lifecycle performance of solar PV.•CdTe turns out to have the highest and mono-Si the lowest EROI and EROC values.•The EU shows a better performance on EROI and EROC than China and USA.•We predict average EROI and EROC under BAU and low-carbon electricity scenarios.•Results show need for systemic policy instruments to stimulate transition to low-carbon economy.</description><identifier>ISSN: 0301-4215</identifier><identifier>EISSN: 1873-6777</identifier><identifier>DOI: 10.1016/j.enpol.2019.111234</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Adoption of innovations ; Carbon ; Carbon dioxide ; Carbon dioxide emissions ; Climate policy ; Discrepancies ; Electricity generation ; Emissions ; Energy policy ; EROC ; EROI ; Incentives ; Innovations ; Life cycles ; Life-cycle assessment ; Photovoltaic cells ; Photovoltaics ; Production ; PV technologies ; Renewable energy ; Renewable resources ; Solar power</subject><ispartof>Energy policy, 2020-03, Vol.138, p.1-11, Article 111234</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Mar 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c503t-91f8762348826ed4dcc8c7699a0995cb225e4a3a8f22dc327529e4d6a665110b3</citedby><cites>FETCH-LOGICAL-c503t-91f8762348826ed4dcc8c7699a0995cb225e4a3a8f22dc327529e4d6a665110b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.enpol.2019.111234$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27866,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Liu, Feng</creatorcontrib><creatorcontrib>van den Bergh, Jeroen C.J.M.</creatorcontrib><title>Differences in CO2 emissions of solar PV production among technologies and regions: Application to China, EU and USA</title><title>Energy policy</title><description>A widespread implicit assumption is that renewable energy options are approximately low-carbon. However, production and life cycles of such technologies tend to produce CO2 emissions. To minimize life-cycle emissions, one should account for such emissions and implement adequate policies to encourage innovation and adoption of well-performing technologies in this respect. We develop a framework to analyse this issue, grounded in the concepts of ‘energy return on energy invested’ (EROI) and ‘net energy return on carbon invested’ (EROC). Applying these to the main PV technologies and production regions – namely China, EU and USA – displays considerable discrepancies. We conditionally predict the development of average EROI and EROC over time under business-as-usual and low-carbon electricity generation scenarios. A main policy lesson is that without a systemic policy instrument, such as carbon pricing, incentives for low-carbon production of renewable energy options are too weak, which likely will delay a complete transition to a low-carbon economy.
•Framework developed around EROI and EROC to study lifecycle performance of solar PV.•CdTe turns out to have the highest and mono-Si the lowest EROI and EROC values.•The EU shows a better performance on EROI and EROC than China and USA.•We predict average EROI and EROC under BAU and low-carbon electricity scenarios.•Results show need for systemic policy instruments to stimulate transition to low-carbon economy.</description><subject>Adoption of innovations</subject><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide emissions</subject><subject>Climate policy</subject><subject>Discrepancies</subject><subject>Electricity generation</subject><subject>Emissions</subject><subject>Energy policy</subject><subject>EROC</subject><subject>EROI</subject><subject>Incentives</subject><subject>Innovations</subject><subject>Life cycles</subject><subject>Life-cycle assessment</subject><subject>Photovoltaic cells</subject><subject>Photovoltaics</subject><subject>Production</subject><subject>PV technologies</subject><subject>Renewable energy</subject><subject>Renewable resources</subject><subject>Solar power</subject><issn>0301-4215</issn><issn>1873-6777</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>7TQ</sourceid><recordid>eNp9kVtLwzAYhoMoOKe_wJuAt7bm1LQVvBhzHmAwQedtyNJ0pnRJTTrBf2-6er2rD8LzfIe8AFxjlGKE-V2Tatu5NiUIlynGmFB2Aia4yGnC8zw_BRNEEU4Ywdk5uAihQQixomQT0D-autZeW6UDNBbOVwTqnQnBOBugq2FwrfTw7RN23lV71cd3KHfObmGv1Zd1rduaqEpbQa-3g3UPZ13XGiUPbO_g_MtYeQsX6wO1fp9dgrNatkFf_dcpWD8tPuYvyXL1_DqfLROVIdonJa6LnMdbioJwXbFKqULlvCwlKstMbQjJNJNUFjUhlaIkz0ipWcUl5xnGaEOn4GbsG3f_3uvQi8btvY0jBWGM8di8oMcpihDP4gKRoiOlvAvB61p03uyk_xUYiSEE0YhDCGIIQYwhROthtHQ888doL4Iyw2dXxmvVi8qZo_4f2fSOzA</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>Liu, Feng</creator><creator>van den Bergh, Jeroen C.J.M.</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TA</scope><scope>7TB</scope><scope>7TQ</scope><scope>8BJ</scope><scope>8FD</scope><scope>DHY</scope><scope>DON</scope><scope>F28</scope><scope>FQK</scope><scope>FR3</scope><scope>H8D</scope><scope>JBE</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>202003</creationdate><title>Differences in CO2 emissions of solar PV production among technologies and regions: Application to China, EU and USA</title><author>Liu, Feng ; van den Bergh, Jeroen C.J.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c503t-91f8762348826ed4dcc8c7699a0995cb225e4a3a8f22dc327529e4d6a665110b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adoption of innovations</topic><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide emissions</topic><topic>Climate policy</topic><topic>Discrepancies</topic><topic>Electricity generation</topic><topic>Emissions</topic><topic>Energy policy</topic><topic>EROC</topic><topic>EROI</topic><topic>Incentives</topic><topic>Innovations</topic><topic>Life cycles</topic><topic>Life-cycle assessment</topic><topic>Photovoltaic cells</topic><topic>Photovoltaics</topic><topic>Production</topic><topic>PV technologies</topic><topic>Renewable energy</topic><topic>Renewable resources</topic><topic>Solar power</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Feng</creatorcontrib><creatorcontrib>van den Bergh, Jeroen C.J.M.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>PAIS Index</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>PAIS International</collection><collection>PAIS International (Ovid)</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>International Bibliography of the Social Sciences</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>International Bibliography of the Social Sciences</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Energy policy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Feng</au><au>van den Bergh, Jeroen C.J.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differences in CO2 emissions of solar PV production among technologies and regions: Application to China, EU and USA</atitle><jtitle>Energy policy</jtitle><date>2020-03</date><risdate>2020</risdate><volume>138</volume><spage>1</spage><epage>11</epage><pages>1-11</pages><artnum>111234</artnum><issn>0301-4215</issn><eissn>1873-6777</eissn><abstract>A widespread implicit assumption is that renewable energy options are approximately low-carbon. However, production and life cycles of such technologies tend to produce CO2 emissions. To minimize life-cycle emissions, one should account for such emissions and implement adequate policies to encourage innovation and adoption of well-performing technologies in this respect. We develop a framework to analyse this issue, grounded in the concepts of ‘energy return on energy invested’ (EROI) and ‘net energy return on carbon invested’ (EROC). Applying these to the main PV technologies and production regions – namely China, EU and USA – displays considerable discrepancies. We conditionally predict the development of average EROI and EROC over time under business-as-usual and low-carbon electricity generation scenarios. A main policy lesson is that without a systemic policy instrument, such as carbon pricing, incentives for low-carbon production of renewable energy options are too weak, which likely will delay a complete transition to a low-carbon economy.
•Framework developed around EROI and EROC to study lifecycle performance of solar PV.•CdTe turns out to have the highest and mono-Si the lowest EROI and EROC values.•The EU shows a better performance on EROI and EROC than China and USA.•We predict average EROI and EROC under BAU and low-carbon electricity scenarios.•Results show need for systemic policy instruments to stimulate transition to low-carbon economy.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.enpol.2019.111234</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0301-4215 |
ispartof | Energy policy, 2020-03, Vol.138, p.1-11, Article 111234 |
issn | 0301-4215 1873-6777 |
language | eng |
recordid | cdi_proquest_journals_2444676283 |
source | Elsevier ScienceDirect Journals Complete; PAIS Index |
subjects | Adoption of innovations Carbon Carbon dioxide Carbon dioxide emissions Climate policy Discrepancies Electricity generation Emissions Energy policy EROC EROI Incentives Innovations Life cycles Life-cycle assessment Photovoltaic cells Photovoltaics Production PV technologies Renewable energy Renewable resources Solar power |
title | Differences in CO2 emissions of solar PV production among technologies and regions: Application to China, EU and USA |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A10%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differences%20in%20CO2%20emissions%20of%20solar%20PV%20production%20among%20technologies%20and%20regions:%20Application%20to%20China,%20EU%20and%20USA&rft.jtitle=Energy%20policy&rft.au=Liu,%20Feng&rft.date=2020-03&rft.volume=138&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.artnum=111234&rft.issn=0301-4215&rft.eissn=1873-6777&rft_id=info:doi/10.1016/j.enpol.2019.111234&rft_dat=%3Cproquest_cross%3E2444676283%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2430065488&rft_id=info:pmid/&rft_els_id=S0301421519308158&rfr_iscdi=true |