Evaluation of structural and dielectric properties of Mn2+-substituted Zn-spinel ferrite nanoparticles for gas sensor applications

[Display omitted] •Ferrite samples possess polycrystalline nature and are effective parameter for gas sensors.•Secondary phases are showing predominant effect on dielectric behaviour.•Sensor response time is dependent on substitution of Mn2+.•The compositions of differently prepared Mn-Zn nanoferrit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors and actuators. B, Chemical Chemical, 2020-08, Vol.316, p.128127, Article 128127
Hauptverfasser: M., Deepty, Ch, Srinivas, E., Ranjith Kumar, P.N., Ramesh, Mohan, N. Krishna, Sher Singh, Meena, Prajapat, C.L., Verma, Amit, Sastry, D.L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 128127
container_title Sensors and actuators. B, Chemical
container_volume 316
creator M., Deepty
Ch, Srinivas
E., Ranjith Kumar
P.N., Ramesh
Mohan, N. Krishna
Sher Singh, Meena
Prajapat, C.L.
Verma, Amit
Sastry, D.L.
description [Display omitted] •Ferrite samples possess polycrystalline nature and are effective parameter for gas sensors.•Secondary phases are showing predominant effect on dielectric behaviour.•Sensor response time is dependent on substitution of Mn2+.•The compositions of differently prepared Mn-Zn nanoferrites are showing good sensor response to LPG.•The ferrite sample Mn0.7Zn0.3Fe2O4 prepared by co-precipitation technique is more suitable for sensor fabrication. Polycrystalline MnxZn1–xFe2O4 (x = 0.5, 0.6, 0.7) were prepared by sol-gel auto-combustion and co-precipitation techniques. The microstructural, dielectric and gas sensing properties of obtained ferrite powders were investigated. The FE-SEM pictures revealed the polycrystalline nature of synthesized ferrite samples. The usual dielectric dispersion of spinel ferrites was observed in the ferrite samples. The ferrite sample Mn0.5Zn0.5Fe2O4 prepared by the two methods possessed high dielectric constant at low frequencies. The surface charge polarization is showing predominant influence on the variation of dielectric constant with the composition. The hopping mechanism in differently prepared ferrite systems is interesting and is aroused from the different metal ions located at B–site in the spinel structure. The optimum temperature (OT) of the samples prepared by sol-gel auto-combustion method is 300 °C and co-precipitation technique is 250 °C. The sensor response is exceptionally high for Mn0.7Zn0.3Fe2O4. It is 1.74 and 1.88 in case of sol-gel auto combustion method and co-precipitation method. The ferrite sample Mn0.7Zn0.3Fe2O4 prepared by co-precipitation method is more suitable for the fabrication of gas sensor.
doi_str_mv 10.1016/j.snb.2020.128127
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2444674085</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925400520304779</els_id><sourcerecordid>2444674085</sourcerecordid><originalsourceid>FETCH-LOGICAL-c255t-959698ad685ddf90da8b78a552a4b19f2c07d3d938c8a98e316029bffb7428e73</originalsourceid><addsrcrecordid>eNp9kE1rHSEUhqW00Ns0PyA7IcsyN-qMo5JVCUlbSOim3XQjjh6Dl4kz8TiBbvvL683tuiuP8D7n4yHkgrM9Z3y8OuwxT3vBRPsLzYV6Q3Zcq77rmVJvyY4ZIbuBMfmefEA8MMaGfmQ78uf2xc2bq2nJdIkUa9l83YqbqcuBhgQz-FqSp2tZVig1AR5zD1l86nCbsKa6VQj0V-5wTRlmGqGUVIFml5fVNcLPjYlLoY8OKULGVrp1nZN_HYsfybvoZoTzf-8Z-Xl3--Pma3f__cu3m8_3nRdS1s5IMxrtwqhlCNGw4PSktJNSuGHiJgrPVOiD6bXXzmjo-ciEmWKc1CA0qP6MXJ76tlOeN8BqD8tWchtpxTAMoxqYli3FTylfFsQC0a4lPbny23Jmj6rtwTbV9qjanlQ35vrEQFv_JUGx6BNkDyGVps-GJf2H_gtJ3IlI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2444674085</pqid></control><display><type>article</type><title>Evaluation of structural and dielectric properties of Mn2+-substituted Zn-spinel ferrite nanoparticles for gas sensor applications</title><source>Elsevier ScienceDirect Journals Complete</source><creator>M., Deepty ; Ch, Srinivas ; E., Ranjith Kumar ; P.N., Ramesh ; Mohan, N. Krishna ; Sher Singh, Meena ; Prajapat, C.L. ; Verma, Amit ; Sastry, D.L.</creator><creatorcontrib>M., Deepty ; Ch, Srinivas ; E., Ranjith Kumar ; P.N., Ramesh ; Mohan, N. Krishna ; Sher Singh, Meena ; Prajapat, C.L. ; Verma, Amit ; Sastry, D.L.</creatorcontrib><description>[Display omitted] •Ferrite samples possess polycrystalline nature and are effective parameter for gas sensors.•Secondary phases are showing predominant effect on dielectric behaviour.•Sensor response time is dependent on substitution of Mn2+.•The compositions of differently prepared Mn-Zn nanoferrites are showing good sensor response to LPG.•The ferrite sample Mn0.7Zn0.3Fe2O4 prepared by co-precipitation technique is more suitable for sensor fabrication. Polycrystalline MnxZn1–xFe2O4 (x = 0.5, 0.6, 0.7) were prepared by sol-gel auto-combustion and co-precipitation techniques. The microstructural, dielectric and gas sensing properties of obtained ferrite powders were investigated. The FE-SEM pictures revealed the polycrystalline nature of synthesized ferrite samples. The usual dielectric dispersion of spinel ferrites was observed in the ferrite samples. The ferrite sample Mn0.5Zn0.5Fe2O4 prepared by the two methods possessed high dielectric constant at low frequencies. The surface charge polarization is showing predominant influence on the variation of dielectric constant with the composition. The hopping mechanism in differently prepared ferrite systems is interesting and is aroused from the different metal ions located at B–site in the spinel structure. The optimum temperature (OT) of the samples prepared by sol-gel auto-combustion method is 300 °C and co-precipitation technique is 250 °C. The sensor response is exceptionally high for Mn0.7Zn0.3Fe2O4. It is 1.74 and 1.88 in case of sol-gel auto combustion method and co-precipitation method. The ferrite sample Mn0.7Zn0.3Fe2O4 prepared by co-precipitation method is more suitable for the fabrication of gas sensor.</description><identifier>ISSN: 0925-4005</identifier><identifier>EISSN: 1873-3077</identifier><identifier>DOI: 10.1016/j.snb.2020.128127</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Cation redistribution ; Combustion ; Coprecipitation ; Dielectric properties ; Ferrites ; Gas sensors ; Nanoparticles ; Permittivity ; Polycrystalline ; Polycrystals ; Sensor response ; Sensors ; Sol-gel processes ; Spinel ; Surface charge ; Surface charge polarization ; Synthesis ; Zinc</subject><ispartof>Sensors and actuators. B, Chemical, 2020-08, Vol.316, p.128127, Article 128127</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Aug 1, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c255t-959698ad685ddf90da8b78a552a4b19f2c07d3d938c8a98e316029bffb7428e73</citedby><cites>FETCH-LOGICAL-c255t-959698ad685ddf90da8b78a552a4b19f2c07d3d938c8a98e316029bffb7428e73</cites><orcidid>0000-0003-4978-2528</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.snb.2020.128127$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>M., Deepty</creatorcontrib><creatorcontrib>Ch, Srinivas</creatorcontrib><creatorcontrib>E., Ranjith Kumar</creatorcontrib><creatorcontrib>P.N., Ramesh</creatorcontrib><creatorcontrib>Mohan, N. Krishna</creatorcontrib><creatorcontrib>Sher Singh, Meena</creatorcontrib><creatorcontrib>Prajapat, C.L.</creatorcontrib><creatorcontrib>Verma, Amit</creatorcontrib><creatorcontrib>Sastry, D.L.</creatorcontrib><title>Evaluation of structural and dielectric properties of Mn2+-substituted Zn-spinel ferrite nanoparticles for gas sensor applications</title><title>Sensors and actuators. B, Chemical</title><description>[Display omitted] •Ferrite samples possess polycrystalline nature and are effective parameter for gas sensors.•Secondary phases are showing predominant effect on dielectric behaviour.•Sensor response time is dependent on substitution of Mn2+.•The compositions of differently prepared Mn-Zn nanoferrites are showing good sensor response to LPG.•The ferrite sample Mn0.7Zn0.3Fe2O4 prepared by co-precipitation technique is more suitable for sensor fabrication. Polycrystalline MnxZn1–xFe2O4 (x = 0.5, 0.6, 0.7) were prepared by sol-gel auto-combustion and co-precipitation techniques. The microstructural, dielectric and gas sensing properties of obtained ferrite powders were investigated. The FE-SEM pictures revealed the polycrystalline nature of synthesized ferrite samples. The usual dielectric dispersion of spinel ferrites was observed in the ferrite samples. The ferrite sample Mn0.5Zn0.5Fe2O4 prepared by the two methods possessed high dielectric constant at low frequencies. The surface charge polarization is showing predominant influence on the variation of dielectric constant with the composition. The hopping mechanism in differently prepared ferrite systems is interesting and is aroused from the different metal ions located at B–site in the spinel structure. The optimum temperature (OT) of the samples prepared by sol-gel auto-combustion method is 300 °C and co-precipitation technique is 250 °C. The sensor response is exceptionally high for Mn0.7Zn0.3Fe2O4. It is 1.74 and 1.88 in case of sol-gel auto combustion method and co-precipitation method. The ferrite sample Mn0.7Zn0.3Fe2O4 prepared by co-precipitation method is more suitable for the fabrication of gas sensor.</description><subject>Cation redistribution</subject><subject>Combustion</subject><subject>Coprecipitation</subject><subject>Dielectric properties</subject><subject>Ferrites</subject><subject>Gas sensors</subject><subject>Nanoparticles</subject><subject>Permittivity</subject><subject>Polycrystalline</subject><subject>Polycrystals</subject><subject>Sensor response</subject><subject>Sensors</subject><subject>Sol-gel processes</subject><subject>Spinel</subject><subject>Surface charge</subject><subject>Surface charge polarization</subject><subject>Synthesis</subject><subject>Zinc</subject><issn>0925-4005</issn><issn>1873-3077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1rHSEUhqW00Ns0PyA7IcsyN-qMo5JVCUlbSOim3XQjjh6Dl4kz8TiBbvvL683tuiuP8D7n4yHkgrM9Z3y8OuwxT3vBRPsLzYV6Q3Zcq77rmVJvyY4ZIbuBMfmefEA8MMaGfmQ78uf2xc2bq2nJdIkUa9l83YqbqcuBhgQz-FqSp2tZVig1AR5zD1l86nCbsKa6VQj0V-5wTRlmGqGUVIFml5fVNcLPjYlLoY8OKULGVrp1nZN_HYsfybvoZoTzf-8Z-Xl3--Pma3f__cu3m8_3nRdS1s5IMxrtwqhlCNGw4PSktJNSuGHiJgrPVOiD6bXXzmjo-ciEmWKc1CA0qP6MXJ76tlOeN8BqD8tWchtpxTAMoxqYli3FTylfFsQC0a4lPbny23Jmj6rtwTbV9qjanlQ35vrEQFv_JUGx6BNkDyGVps-GJf2H_gtJ3IlI</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>M., Deepty</creator><creator>Ch, Srinivas</creator><creator>E., Ranjith Kumar</creator><creator>P.N., Ramesh</creator><creator>Mohan, N. Krishna</creator><creator>Sher Singh, Meena</creator><creator>Prajapat, C.L.</creator><creator>Verma, Amit</creator><creator>Sastry, D.L.</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4978-2528</orcidid></search><sort><creationdate>20200801</creationdate><title>Evaluation of structural and dielectric properties of Mn2+-substituted Zn-spinel ferrite nanoparticles for gas sensor applications</title><author>M., Deepty ; Ch, Srinivas ; E., Ranjith Kumar ; P.N., Ramesh ; Mohan, N. Krishna ; Sher Singh, Meena ; Prajapat, C.L. ; Verma, Amit ; Sastry, D.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c255t-959698ad685ddf90da8b78a552a4b19f2c07d3d938c8a98e316029bffb7428e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cation redistribution</topic><topic>Combustion</topic><topic>Coprecipitation</topic><topic>Dielectric properties</topic><topic>Ferrites</topic><topic>Gas sensors</topic><topic>Nanoparticles</topic><topic>Permittivity</topic><topic>Polycrystalline</topic><topic>Polycrystals</topic><topic>Sensor response</topic><topic>Sensors</topic><topic>Sol-gel processes</topic><topic>Spinel</topic><topic>Surface charge</topic><topic>Surface charge polarization</topic><topic>Synthesis</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>M., Deepty</creatorcontrib><creatorcontrib>Ch, Srinivas</creatorcontrib><creatorcontrib>E., Ranjith Kumar</creatorcontrib><creatorcontrib>P.N., Ramesh</creatorcontrib><creatorcontrib>Mohan, N. Krishna</creatorcontrib><creatorcontrib>Sher Singh, Meena</creatorcontrib><creatorcontrib>Prajapat, C.L.</creatorcontrib><creatorcontrib>Verma, Amit</creatorcontrib><creatorcontrib>Sastry, D.L.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sensors and actuators. B, Chemical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>M., Deepty</au><au>Ch, Srinivas</au><au>E., Ranjith Kumar</au><au>P.N., Ramesh</au><au>Mohan, N. Krishna</au><au>Sher Singh, Meena</au><au>Prajapat, C.L.</au><au>Verma, Amit</au><au>Sastry, D.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of structural and dielectric properties of Mn2+-substituted Zn-spinel ferrite nanoparticles for gas sensor applications</atitle><jtitle>Sensors and actuators. B, Chemical</jtitle><date>2020-08-01</date><risdate>2020</risdate><volume>316</volume><spage>128127</spage><pages>128127-</pages><artnum>128127</artnum><issn>0925-4005</issn><eissn>1873-3077</eissn><abstract>[Display omitted] •Ferrite samples possess polycrystalline nature and are effective parameter for gas sensors.•Secondary phases are showing predominant effect on dielectric behaviour.•Sensor response time is dependent on substitution of Mn2+.•The compositions of differently prepared Mn-Zn nanoferrites are showing good sensor response to LPG.•The ferrite sample Mn0.7Zn0.3Fe2O4 prepared by co-precipitation technique is more suitable for sensor fabrication. Polycrystalline MnxZn1–xFe2O4 (x = 0.5, 0.6, 0.7) were prepared by sol-gel auto-combustion and co-precipitation techniques. The microstructural, dielectric and gas sensing properties of obtained ferrite powders were investigated. The FE-SEM pictures revealed the polycrystalline nature of synthesized ferrite samples. The usual dielectric dispersion of spinel ferrites was observed in the ferrite samples. The ferrite sample Mn0.5Zn0.5Fe2O4 prepared by the two methods possessed high dielectric constant at low frequencies. The surface charge polarization is showing predominant influence on the variation of dielectric constant with the composition. The hopping mechanism in differently prepared ferrite systems is interesting and is aroused from the different metal ions located at B–site in the spinel structure. The optimum temperature (OT) of the samples prepared by sol-gel auto-combustion method is 300 °C and co-precipitation technique is 250 °C. The sensor response is exceptionally high for Mn0.7Zn0.3Fe2O4. It is 1.74 and 1.88 in case of sol-gel auto combustion method and co-precipitation method. The ferrite sample Mn0.7Zn0.3Fe2O4 prepared by co-precipitation method is more suitable for the fabrication of gas sensor.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.snb.2020.128127</doi><orcidid>https://orcid.org/0000-0003-4978-2528</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0925-4005
ispartof Sensors and actuators. B, Chemical, 2020-08, Vol.316, p.128127, Article 128127
issn 0925-4005
1873-3077
language eng
recordid cdi_proquest_journals_2444674085
source Elsevier ScienceDirect Journals Complete
subjects Cation redistribution
Combustion
Coprecipitation
Dielectric properties
Ferrites
Gas sensors
Nanoparticles
Permittivity
Polycrystalline
Polycrystals
Sensor response
Sensors
Sol-gel processes
Spinel
Surface charge
Surface charge polarization
Synthesis
Zinc
title Evaluation of structural and dielectric properties of Mn2+-substituted Zn-spinel ferrite nanoparticles for gas sensor applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T03%3A45%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20structural%20and%20dielectric%20properties%20of%20Mn2+-substituted%20Zn-spinel%20ferrite%20nanoparticles%20for%20gas%20sensor%20applications&rft.jtitle=Sensors%20and%20actuators.%20B,%20Chemical&rft.au=M.,%20Deepty&rft.date=2020-08-01&rft.volume=316&rft.spage=128127&rft.pages=128127-&rft.artnum=128127&rft.issn=0925-4005&rft.eissn=1873-3077&rft_id=info:doi/10.1016/j.snb.2020.128127&rft_dat=%3Cproquest_cross%3E2444674085%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2444674085&rft_id=info:pmid/&rft_els_id=S0925400520304779&rfr_iscdi=true