On a conjecture concerning the Bruhat order

Let R and S be two sequences of positive integers in nonincreasing order having the same sum. Let A(R,S) be the class of all (0,1)-matrices with row sum vector R and column sum vector S. If A(R,S) is nonempty, an inversion in A∈A(R,S) consists of two entries of A equal to 1, one of them is located t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Linear algebra and its applications 2020-09, Vol.600, p.82-95
Hauptverfasser: Fernandes, Rosário, da Cruz, Henrique F., Salomão, Domingos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 95
container_issue
container_start_page 82
container_title Linear algebra and its applications
container_volume 600
creator Fernandes, Rosário
da Cruz, Henrique F.
Salomão, Domingos
description Let R and S be two sequences of positive integers in nonincreasing order having the same sum. Let A(R,S) be the class of all (0,1)-matrices with row sum vector R and column sum vector S. If A(R,S) is nonempty, an inversion in A∈A(R,S) consists of two entries of A equal to 1, one of them is located to the top-right of the other. Let ν(A) be the total number of inversions in A. The Bruhat order is a partial order defined on A(R,S) and denoted by ⪯B. In this paper, we prove the conjecture:•“If A,C∈A(R,S), A≠C and A⪯BC then ν(A)
doi_str_mv 10.1016/j.laa.2020.04.015
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2444673800</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0024379520302032</els_id><sourcerecordid>2444673800</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-7bccf00d97ea45c95e4599e32a62b9b6ad9a5da7bc11bd868a29a903d97282b33</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwAewisUQJ42dssYKqPKRK3cDacuwpTVSSYidI_D2uyprVzOKeeRxCrilUFKi666qdcxUDBhWICqg8ITOqa15SLdUpmQEwUfLayHNykVIHAKIGNiO3675whR_6Dv04RTy0HmPf9h_FuMXiMU5bNxZDDBgvydnG7RJe_dU5eX9avi1eytX6-XXxsCo9V3os68b7DUAwNTohvZEopDHImVOsMY1ywTgZXI5R2gSttGPGGeAZYJo1nM_JzXHuPg5fE6bRdsMU-7zSMiGEqrkGyCl6TPk4pBRxY_ex_XTxx1KwBye2s9mJPTixIGx2kpn7I4P5_O8Wo02-xfxwaGP-34ah_Yf-BQASZ9w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2444673800</pqid></control><display><type>article</type><title>On a conjecture concerning the Bruhat order</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Fernandes, Rosário ; da Cruz, Henrique F. ; Salomão, Domingos</creator><creatorcontrib>Fernandes, Rosário ; da Cruz, Henrique F. ; Salomão, Domingos</creatorcontrib><description>Let R and S be two sequences of positive integers in nonincreasing order having the same sum. Let A(R,S) be the class of all (0,1)-matrices with row sum vector R and column sum vector S. If A(R,S) is nonempty, an inversion in A∈A(R,S) consists of two entries of A equal to 1, one of them is located to the top-right of the other. Let ν(A) be the total number of inversions in A. The Bruhat order is a partial order defined on A(R,S) and denoted by ⪯B. In this paper, we prove the conjecture:•“If A,C∈A(R,S), A≠C and A⪯BC then ν(A)&lt;ν(C)”.</description><identifier>ISSN: 0024-3795</identifier><identifier>EISSN: 1873-1856</identifier><identifier>DOI: 10.1016/j.laa.2020.04.015</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>[formula omitted]-Matrices ; Bruhat order ; Inversions ; Linear algebra ; Mathematical analysis ; Matrix algebra ; Matrix methods ; Sequences</subject><ispartof>Linear algebra and its applications, 2020-09, Vol.600, p.82-95</ispartof><rights>2020 Elsevier Inc.</rights><rights>Copyright American Elsevier Company, Inc. Sep 1, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-7bccf00d97ea45c95e4599e32a62b9b6ad9a5da7bc11bd868a29a903d97282b33</citedby><cites>FETCH-LOGICAL-c368t-7bccf00d97ea45c95e4599e32a62b9b6ad9a5da7bc11bd868a29a903d97282b33</cites><orcidid>0000-0003-2695-9079</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0024379520302032$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Fernandes, Rosário</creatorcontrib><creatorcontrib>da Cruz, Henrique F.</creatorcontrib><creatorcontrib>Salomão, Domingos</creatorcontrib><title>On a conjecture concerning the Bruhat order</title><title>Linear algebra and its applications</title><description>Let R and S be two sequences of positive integers in nonincreasing order having the same sum. Let A(R,S) be the class of all (0,1)-matrices with row sum vector R and column sum vector S. If A(R,S) is nonempty, an inversion in A∈A(R,S) consists of two entries of A equal to 1, one of them is located to the top-right of the other. Let ν(A) be the total number of inversions in A. The Bruhat order is a partial order defined on A(R,S) and denoted by ⪯B. In this paper, we prove the conjecture:•“If A,C∈A(R,S), A≠C and A⪯BC then ν(A)&lt;ν(C)”.</description><subject>[formula omitted]-Matrices</subject><subject>Bruhat order</subject><subject>Inversions</subject><subject>Linear algebra</subject><subject>Mathematical analysis</subject><subject>Matrix algebra</subject><subject>Matrix methods</subject><subject>Sequences</subject><issn>0024-3795</issn><issn>1873-1856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwAewisUQJ42dssYKqPKRK3cDacuwpTVSSYidI_D2uyprVzOKeeRxCrilUFKi666qdcxUDBhWICqg8ITOqa15SLdUpmQEwUfLayHNykVIHAKIGNiO3675whR_6Dv04RTy0HmPf9h_FuMXiMU5bNxZDDBgvydnG7RJe_dU5eX9avi1eytX6-XXxsCo9V3os68b7DUAwNTohvZEopDHImVOsMY1ywTgZXI5R2gSttGPGGeAZYJo1nM_JzXHuPg5fE6bRdsMU-7zSMiGEqrkGyCl6TPk4pBRxY_ex_XTxx1KwBye2s9mJPTixIGx2kpn7I4P5_O8Wo02-xfxwaGP-34ah_Yf-BQASZ9w</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Fernandes, Rosário</creator><creator>da Cruz, Henrique F.</creator><creator>Salomão, Domingos</creator><general>Elsevier Inc</general><general>American Elsevier Company, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2695-9079</orcidid></search><sort><creationdate>20200901</creationdate><title>On a conjecture concerning the Bruhat order</title><author>Fernandes, Rosário ; da Cruz, Henrique F. ; Salomão, Domingos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-7bccf00d97ea45c95e4599e32a62b9b6ad9a5da7bc11bd868a29a903d97282b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>[formula omitted]-Matrices</topic><topic>Bruhat order</topic><topic>Inversions</topic><topic>Linear algebra</topic><topic>Mathematical analysis</topic><topic>Matrix algebra</topic><topic>Matrix methods</topic><topic>Sequences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fernandes, Rosário</creatorcontrib><creatorcontrib>da Cruz, Henrique F.</creatorcontrib><creatorcontrib>Salomão, Domingos</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Linear algebra and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fernandes, Rosário</au><au>da Cruz, Henrique F.</au><au>Salomão, Domingos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On a conjecture concerning the Bruhat order</atitle><jtitle>Linear algebra and its applications</jtitle><date>2020-09-01</date><risdate>2020</risdate><volume>600</volume><spage>82</spage><epage>95</epage><pages>82-95</pages><issn>0024-3795</issn><eissn>1873-1856</eissn><abstract>Let R and S be two sequences of positive integers in nonincreasing order having the same sum. Let A(R,S) be the class of all (0,1)-matrices with row sum vector R and column sum vector S. If A(R,S) is nonempty, an inversion in A∈A(R,S) consists of two entries of A equal to 1, one of them is located to the top-right of the other. Let ν(A) be the total number of inversions in A. The Bruhat order is a partial order defined on A(R,S) and denoted by ⪯B. In this paper, we prove the conjecture:•“If A,C∈A(R,S), A≠C and A⪯BC then ν(A)&lt;ν(C)”.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.laa.2020.04.015</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-2695-9079</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0024-3795
ispartof Linear algebra and its applications, 2020-09, Vol.600, p.82-95
issn 0024-3795
1873-1856
language eng
recordid cdi_proquest_journals_2444673800
source Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects [formula omitted]-Matrices
Bruhat order
Inversions
Linear algebra
Mathematical analysis
Matrix algebra
Matrix methods
Sequences
title On a conjecture concerning the Bruhat order
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T18%3A26%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20a%20conjecture%20concerning%20the%20Bruhat%20order&rft.jtitle=Linear%20algebra%20and%20its%20applications&rft.au=Fernandes,%20Ros%C3%A1rio&rft.date=2020-09-01&rft.volume=600&rft.spage=82&rft.epage=95&rft.pages=82-95&rft.issn=0024-3795&rft.eissn=1873-1856&rft_id=info:doi/10.1016/j.laa.2020.04.015&rft_dat=%3Cproquest_cross%3E2444673800%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2444673800&rft_id=info:pmid/&rft_els_id=S0024379520302032&rfr_iscdi=true