Experimental Validation of Model Predictive Control Applied to the Azura Wave Energy Converter

Ocean wave energy is a promising area of renewable energy development. However, there are unique operational challenges, particularly with regards to modeling, estimation, and control. Model Predictive Control (MPC) is a widely studied control approach that has strong potential for successful applic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on sustainable energy 2020-10, Vol.11 (4), p.2284-2293
Hauptverfasser: Ling, Bradley A., Bosma, Bret, Brekken, Ted K. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2293
container_issue 4
container_start_page 2284
container_title IEEE transactions on sustainable energy
container_volume 11
creator Ling, Bradley A.
Bosma, Bret
Brekken, Ted K. A.
description Ocean wave energy is a promising area of renewable energy development. However, there are unique operational challenges, particularly with regards to modeling, estimation, and control. Model Predictive Control (MPC) is a widely studied control approach that has strong potential for successful application to ocean wave energy conversion. It combines a predictive element, which is necessary for optimal wave energy conversion, along with consideration of system limitations, which is extremely important when operating within the very large forces present in ocean hydrodynamics. This article presents MPC formulation and experimental testing, applied to the 1/15th scale Azura wave energy converter developed and tested by Northwest Energy Innovations (NWEI). The results demonstrate successful prototype testing, with MPC providing an average increase in power production of 36% over standard fixed damping for six cases of sea states.
doi_str_mv 10.1109/TSTE.2019.2953868
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2444630339</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8903474</ieee_id><sourcerecordid>2444630339</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-d0842cbef827ea2f2a58baca1039cdf90cbedbae4e941f69befd5511f2680e713</originalsourceid><addsrcrecordid>eNo9kNtKw0AQhoMoWGofQLxZ9Dp1TznsZSnxABUFq965bDcTuyVm42ZbrE_vhpTOzQzMN8PPF0WXBE8JweJ2-bosphQTMaUiYXman0QjIriIGWbZ6XGm4jyadN0Gh2KMpQyPos_itwVnvqHxqkbvqjal8sY2yFboyZZQoxcHpdHe7ADNbeOdrdGsbWsDJfIW-TWg2d_WKfShAlE04L72PbgD58FdRGeVqjuYHPo4ersrlvOHePF8_zifLWIdYvi4xDmnegVVTjNQtKIqyVdKK4KZ0GUlcNiVKwUcBCdVKgJZJgkhFU1zDBlh4-h6-Gs7b2SnjQe91rZpQHtJkpykHAfoZoBaZ3-20Hm5sVvXhFyScs6DD8ZEoMhAaWe7zkEl2-BHub0kWPa6Za9b9rrlQXe4uRpuDAAc-VxgxjPO_gFHW3wv</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2444630339</pqid></control><display><type>article</type><title>Experimental Validation of Model Predictive Control Applied to the Azura Wave Energy Converter</title><source>IEEE Electronic Library (IEL)</source><creator>Ling, Bradley A. ; Bosma, Bret ; Brekken, Ted K. A.</creator><creatorcontrib>Ling, Bradley A. ; Bosma, Bret ; Brekken, Ted K. A. ; Northwest Energy Innovations, Portland, OR (United States)</creatorcontrib><description>Ocean wave energy is a promising area of renewable energy development. However, there are unique operational challenges, particularly with regards to modeling, estimation, and control. Model Predictive Control (MPC) is a widely studied control approach that has strong potential for successful application to ocean wave energy conversion. It combines a predictive element, which is necessary for optimal wave energy conversion, along with consideration of system limitations, which is extremely important when operating within the very large forces present in ocean hydrodynamics. This article presents MPC formulation and experimental testing, applied to the 1/15th scale Azura wave energy converter developed and tested by Northwest Energy Innovations (NWEI). The results demonstrate successful prototype testing, with MPC providing an average increase in power production of 36% over standard fixed damping for six cases of sea states.</description><identifier>ISSN: 1949-3029</identifier><identifier>EISSN: 1949-3037</identifier><identifier>DOI: 10.1109/TSTE.2019.2953868</identifier><identifier>CODEN: ITSEAJ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Computational fluid dynamics ; Converters ; Damping ; Energy ; Energy conversion ; Fluid flow ; Hydrodynamics ; Marine technology ; model predictive control ; model predictive control (MPC) ; ocean wave energy ; Ocean waves ; Predictive control ; Predictive models ; Prototype tests ; Renewable energy ; Renewable Energy sources ; Sea states ; TIDAL AND WAVE POWER ; Wave energy ; Wave power</subject><ispartof>IEEE transactions on sustainable energy, 2020-10, Vol.11 (4), p.2284-2293</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-d0842cbef827ea2f2a58baca1039cdf90cbedbae4e941f69befd5511f2680e713</citedby><cites>FETCH-LOGICAL-c363t-d0842cbef827ea2f2a58baca1039cdf90cbedbae4e941f69befd5511f2680e713</cites><orcidid>0000-0002-3093-108X ; 0000-0003-3838-3599 ; 0000-0002-5581-6467</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8903474$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,777,781,793,882,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8903474$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.osti.gov/servlets/purl/1581640$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ling, Bradley A.</creatorcontrib><creatorcontrib>Bosma, Bret</creatorcontrib><creatorcontrib>Brekken, Ted K. A.</creatorcontrib><creatorcontrib>Northwest Energy Innovations, Portland, OR (United States)</creatorcontrib><title>Experimental Validation of Model Predictive Control Applied to the Azura Wave Energy Converter</title><title>IEEE transactions on sustainable energy</title><addtitle>TSTE</addtitle><description>Ocean wave energy is a promising area of renewable energy development. However, there are unique operational challenges, particularly with regards to modeling, estimation, and control. Model Predictive Control (MPC) is a widely studied control approach that has strong potential for successful application to ocean wave energy conversion. It combines a predictive element, which is necessary for optimal wave energy conversion, along with consideration of system limitations, which is extremely important when operating within the very large forces present in ocean hydrodynamics. This article presents MPC formulation and experimental testing, applied to the 1/15th scale Azura wave energy converter developed and tested by Northwest Energy Innovations (NWEI). The results demonstrate successful prototype testing, with MPC providing an average increase in power production of 36% over standard fixed damping for six cases of sea states.</description><subject>Computational fluid dynamics</subject><subject>Converters</subject><subject>Damping</subject><subject>Energy</subject><subject>Energy conversion</subject><subject>Fluid flow</subject><subject>Hydrodynamics</subject><subject>Marine technology</subject><subject>model predictive control</subject><subject>model predictive control (MPC)</subject><subject>ocean wave energy</subject><subject>Ocean waves</subject><subject>Predictive control</subject><subject>Predictive models</subject><subject>Prototype tests</subject><subject>Renewable energy</subject><subject>Renewable Energy sources</subject><subject>Sea states</subject><subject>TIDAL AND WAVE POWER</subject><subject>Wave energy</subject><subject>Wave power</subject><issn>1949-3029</issn><issn>1949-3037</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kNtKw0AQhoMoWGofQLxZ9Dp1TznsZSnxABUFq965bDcTuyVm42ZbrE_vhpTOzQzMN8PPF0WXBE8JweJ2-bosphQTMaUiYXman0QjIriIGWbZ6XGm4jyadN0Gh2KMpQyPos_itwVnvqHxqkbvqjal8sY2yFboyZZQoxcHpdHe7ADNbeOdrdGsbWsDJfIW-TWg2d_WKfShAlE04L72PbgD58FdRGeVqjuYHPo4ersrlvOHePF8_zifLWIdYvi4xDmnegVVTjNQtKIqyVdKK4KZ0GUlcNiVKwUcBCdVKgJZJgkhFU1zDBlh4-h6-Gs7b2SnjQe91rZpQHtJkpykHAfoZoBaZ3-20Hm5sVvXhFyScs6DD8ZEoMhAaWe7zkEl2-BHub0kWPa6Za9b9rrlQXe4uRpuDAAc-VxgxjPO_gFHW3wv</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Ling, Bradley A.</creator><creator>Bosma, Bret</creator><creator>Brekken, Ted K. A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-3093-108X</orcidid><orcidid>https://orcid.org/0000-0003-3838-3599</orcidid><orcidid>https://orcid.org/0000-0002-5581-6467</orcidid></search><sort><creationdate>20201001</creationdate><title>Experimental Validation of Model Predictive Control Applied to the Azura Wave Energy Converter</title><author>Ling, Bradley A. ; Bosma, Bret ; Brekken, Ted K. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-d0842cbef827ea2f2a58baca1039cdf90cbedbae4e941f69befd5511f2680e713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computational fluid dynamics</topic><topic>Converters</topic><topic>Damping</topic><topic>Energy</topic><topic>Energy conversion</topic><topic>Fluid flow</topic><topic>Hydrodynamics</topic><topic>Marine technology</topic><topic>model predictive control</topic><topic>model predictive control (MPC)</topic><topic>ocean wave energy</topic><topic>Ocean waves</topic><topic>Predictive control</topic><topic>Predictive models</topic><topic>Prototype tests</topic><topic>Renewable energy</topic><topic>Renewable Energy sources</topic><topic>Sea states</topic><topic>TIDAL AND WAVE POWER</topic><topic>Wave energy</topic><topic>Wave power</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ling, Bradley A.</creatorcontrib><creatorcontrib>Bosma, Bret</creatorcontrib><creatorcontrib>Brekken, Ted K. A.</creatorcontrib><creatorcontrib>Northwest Energy Innovations, Portland, OR (United States)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>IEEE transactions on sustainable energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ling, Bradley A.</au><au>Bosma, Bret</au><au>Brekken, Ted K. A.</au><aucorp>Northwest Energy Innovations, Portland, OR (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental Validation of Model Predictive Control Applied to the Azura Wave Energy Converter</atitle><jtitle>IEEE transactions on sustainable energy</jtitle><stitle>TSTE</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>11</volume><issue>4</issue><spage>2284</spage><epage>2293</epage><pages>2284-2293</pages><issn>1949-3029</issn><eissn>1949-3037</eissn><coden>ITSEAJ</coden><abstract>Ocean wave energy is a promising area of renewable energy development. However, there are unique operational challenges, particularly with regards to modeling, estimation, and control. Model Predictive Control (MPC) is a widely studied control approach that has strong potential for successful application to ocean wave energy conversion. It combines a predictive element, which is necessary for optimal wave energy conversion, along with consideration of system limitations, which is extremely important when operating within the very large forces present in ocean hydrodynamics. This article presents MPC formulation and experimental testing, applied to the 1/15th scale Azura wave energy converter developed and tested by Northwest Energy Innovations (NWEI). The results demonstrate successful prototype testing, with MPC providing an average increase in power production of 36% over standard fixed damping for six cases of sea states.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSTE.2019.2953868</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3093-108X</orcidid><orcidid>https://orcid.org/0000-0003-3838-3599</orcidid><orcidid>https://orcid.org/0000-0002-5581-6467</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1949-3029
ispartof IEEE transactions on sustainable energy, 2020-10, Vol.11 (4), p.2284-2293
issn 1949-3029
1949-3037
language eng
recordid cdi_proquest_journals_2444630339
source IEEE Electronic Library (IEL)
subjects Computational fluid dynamics
Converters
Damping
Energy
Energy conversion
Fluid flow
Hydrodynamics
Marine technology
model predictive control
model predictive control (MPC)
ocean wave energy
Ocean waves
Predictive control
Predictive models
Prototype tests
Renewable energy
Renewable Energy sources
Sea states
TIDAL AND WAVE POWER
Wave energy
Wave power
title Experimental Validation of Model Predictive Control Applied to the Azura Wave Energy Converter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T17%3A38%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20Validation%20of%20Model%20Predictive%20Control%20Applied%20to%20the%20Azura%20Wave%20Energy%20Converter&rft.jtitle=IEEE%20transactions%20on%20sustainable%20energy&rft.au=Ling,%20Bradley%20A.&rft.aucorp=Northwest%20Energy%20Innovations,%20Portland,%20OR%20(United%20States)&rft.date=2020-10-01&rft.volume=11&rft.issue=4&rft.spage=2284&rft.epage=2293&rft.pages=2284-2293&rft.issn=1949-3029&rft.eissn=1949-3037&rft.coden=ITSEAJ&rft_id=info:doi/10.1109/TSTE.2019.2953868&rft_dat=%3Cproquest_RIE%3E2444630339%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2444630339&rft_id=info:pmid/&rft_ieee_id=8903474&rfr_iscdi=true