Principles and Design of an Integrated Magnetics Structure for Electrochemical Applications

This article presents an integrated magnetics (IM) structure that functions as a current-doubler rectifier (CDR). The proposed IM-CDR is suitable for electrochemical wastewater treatment applications where low-voltage high-current power converters are required for effective treatment. Electrochemica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industry applications 2020-09, Vol.56 (5), p.5645-5655
Hauptverfasser: Elsahwi, Essam S., Ruda, Harry E., Dawson, Francis P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5655
container_issue 5
container_start_page 5645
container_title IEEE transactions on industry applications
container_volume 56
creator Elsahwi, Essam S.
Ruda, Harry E.
Dawson, Francis P.
description This article presents an integrated magnetics (IM) structure that functions as a current-doubler rectifier (CDR). The proposed IM-CDR is suitable for electrochemical wastewater treatment applications where low-voltage high-current power converters are required for effective treatment. Electrochemical wastewater treatment is a promising technology that has several advantages compared to the traditional biological methods currently employed in the mining industry. However, the technology suffers from high operating cost due to the conduction losses associated with long cables or busbars that run from the source to the treatment cell carrying high current. The IM approach integrates the transformer and two filtering inductors of the discrete CDR (D-CDR) into one magnetic structure which allows for the secondary side of the structure to be packaged with the electrochemical cell, thus resulting in a HVdc distribution network, and as a result, lowers the conduction losses while still benefiting from the ripple cancellation offered by the CDR architecture. This article presents a design example to help the designer relate the required electrical characteristics of the D-CDR to the design parameters of the IM-CDR. A finite element analysis simulation is performed on the IM structure to validate the derived electrical equivalent model. The IM structure is also experimentally built in our lab, achieving a 97.8% efficiency over a 20-40 A load range.
doi_str_mv 10.1109/TIA.2020.2999554
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2444617382</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9106787</ieee_id><sourcerecordid>2444617382</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-aca9075c308498a96192d5737225929c16f34d9835a75d0cfadb08c04b786f7c3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wUvA89bJ12bnWGrVQkXBevIQ0my2btnurkl68N-7pcXTzDDPOwMPIbcMJowBPqwW0wkHDhOOiErJMzJiKDBDketzMgJAkQ0beUmuYtwCMKmYHJGv91C3ru4bH6ltS_roY71paVcNE120yW-CTb6kr3bT-lS7SD9S2Lu0D55WXaDzxrsUOvftd7WzDZ32fTM0qe7aeE0uKttEf3OqY_L5NF_NXrLl2_NiNl1mjiNLmXUWQSsnoJBYWMwZ8lJpoTlXyNGxvBKyxEIoq1UJrrLlGgoHcq2LvNJOjMn98W4fup-9j8lsu31oh5eGSylzpkXBBwqOlAtdjMFXpg_1zoZfw8AcFJpBoTkoNCeFQ-TuGKm99_84Msh1ocUfm1NspA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2444617382</pqid></control><display><type>article</type><title>Principles and Design of an Integrated Magnetics Structure for Electrochemical Applications</title><source>IEEE Electronic Library (IEL)</source><creator>Elsahwi, Essam S. ; Ruda, Harry E. ; Dawson, Francis P.</creator><creatorcontrib>Elsahwi, Essam S. ; Ruda, Harry E. ; Dawson, Francis P.</creatorcontrib><description>This article presents an integrated magnetics (IM) structure that functions as a current-doubler rectifier (CDR). The proposed IM-CDR is suitable for electrochemical wastewater treatment applications where low-voltage high-current power converters are required for effective treatment. Electrochemical wastewater treatment is a promising technology that has several advantages compared to the traditional biological methods currently employed in the mining industry. However, the technology suffers from high operating cost due to the conduction losses associated with long cables or busbars that run from the source to the treatment cell carrying high current. The IM approach integrates the transformer and two filtering inductors of the discrete CDR (D-CDR) into one magnetic structure which allows for the secondary side of the structure to be packaged with the electrochemical cell, thus resulting in a HVdc distribution network, and as a result, lowers the conduction losses while still benefiting from the ripple cancellation offered by the CDR architecture. This article presents a design example to help the designer relate the required electrical characteristics of the D-CDR to the design parameters of the IM-CDR. A finite element analysis simulation is performed on the IM structure to validate the derived electrical equivalent model. The IM structure is also experimentally built in our lab, achieving a 97.8% efficiency over a 20-40 A load range.</description><identifier>ISSN: 0093-9994</identifier><identifier>EISSN: 1939-9367</identifier><identifier>DOI: 10.1109/TIA.2020.2999554</identifier><identifier>CODEN: ITIACR</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Busbars ; Cables ; Cathodes ; Computer simulation ; Conduction losses ; Contactless energy transfer ; current-doubler rectifier (CDR) ; Design ; Design parameters ; Electrochemical cells ; electrochemical design requirements ; electrochemical wastewater treatment ; Electrolytes ; Finite element method ; High current ; Inductors ; Integrated circuit modeling ; integrated magnetic (IM) design ; Magnetic structure ; Magnetics ; Mining industry ; Power converters ; Wastewater treatment ; Water treatment</subject><ispartof>IEEE transactions on industry applications, 2020-09, Vol.56 (5), p.5645-5655</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-aca9075c308498a96192d5737225929c16f34d9835a75d0cfadb08c04b786f7c3</citedby><cites>FETCH-LOGICAL-c291t-aca9075c308498a96192d5737225929c16f34d9835a75d0cfadb08c04b786f7c3</cites><orcidid>0000-0003-1918-5749 ; 0000-0001-6883-7753</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9106787$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9106787$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Elsahwi, Essam S.</creatorcontrib><creatorcontrib>Ruda, Harry E.</creatorcontrib><creatorcontrib>Dawson, Francis P.</creatorcontrib><title>Principles and Design of an Integrated Magnetics Structure for Electrochemical Applications</title><title>IEEE transactions on industry applications</title><addtitle>TIA</addtitle><description>This article presents an integrated magnetics (IM) structure that functions as a current-doubler rectifier (CDR). The proposed IM-CDR is suitable for electrochemical wastewater treatment applications where low-voltage high-current power converters are required for effective treatment. Electrochemical wastewater treatment is a promising technology that has several advantages compared to the traditional biological methods currently employed in the mining industry. However, the technology suffers from high operating cost due to the conduction losses associated with long cables or busbars that run from the source to the treatment cell carrying high current. The IM approach integrates the transformer and two filtering inductors of the discrete CDR (D-CDR) into one magnetic structure which allows for the secondary side of the structure to be packaged with the electrochemical cell, thus resulting in a HVdc distribution network, and as a result, lowers the conduction losses while still benefiting from the ripple cancellation offered by the CDR architecture. This article presents a design example to help the designer relate the required electrical characteristics of the D-CDR to the design parameters of the IM-CDR. A finite element analysis simulation is performed on the IM structure to validate the derived electrical equivalent model. The IM structure is also experimentally built in our lab, achieving a 97.8% efficiency over a 20-40 A load range.</description><subject>Busbars</subject><subject>Cables</subject><subject>Cathodes</subject><subject>Computer simulation</subject><subject>Conduction losses</subject><subject>Contactless energy transfer</subject><subject>current-doubler rectifier (CDR)</subject><subject>Design</subject><subject>Design parameters</subject><subject>Electrochemical cells</subject><subject>electrochemical design requirements</subject><subject>electrochemical wastewater treatment</subject><subject>Electrolytes</subject><subject>Finite element method</subject><subject>High current</subject><subject>Inductors</subject><subject>Integrated circuit modeling</subject><subject>integrated magnetic (IM) design</subject><subject>Magnetic structure</subject><subject>Magnetics</subject><subject>Mining industry</subject><subject>Power converters</subject><subject>Wastewater treatment</subject><subject>Water treatment</subject><issn>0093-9994</issn><issn>1939-9367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wUvA89bJ12bnWGrVQkXBevIQ0my2btnurkl68N-7pcXTzDDPOwMPIbcMJowBPqwW0wkHDhOOiErJMzJiKDBDketzMgJAkQ0beUmuYtwCMKmYHJGv91C3ru4bH6ltS_roY71paVcNE120yW-CTb6kr3bT-lS7SD9S2Lu0D55WXaDzxrsUOvftd7WzDZ32fTM0qe7aeE0uKttEf3OqY_L5NF_NXrLl2_NiNl1mjiNLmXUWQSsnoJBYWMwZ8lJpoTlXyNGxvBKyxEIoq1UJrrLlGgoHcq2LvNJOjMn98W4fup-9j8lsu31oh5eGSylzpkXBBwqOlAtdjMFXpg_1zoZfw8AcFJpBoTkoNCeFQ-TuGKm99_84Msh1ocUfm1NspA</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Elsahwi, Essam S.</creator><creator>Ruda, Harry E.</creator><creator>Dawson, Francis P.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1918-5749</orcidid><orcidid>https://orcid.org/0000-0001-6883-7753</orcidid></search><sort><creationdate>20200901</creationdate><title>Principles and Design of an Integrated Magnetics Structure for Electrochemical Applications</title><author>Elsahwi, Essam S. ; Ruda, Harry E. ; Dawson, Francis P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-aca9075c308498a96192d5737225929c16f34d9835a75d0cfadb08c04b786f7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Busbars</topic><topic>Cables</topic><topic>Cathodes</topic><topic>Computer simulation</topic><topic>Conduction losses</topic><topic>Contactless energy transfer</topic><topic>current-doubler rectifier (CDR)</topic><topic>Design</topic><topic>Design parameters</topic><topic>Electrochemical cells</topic><topic>electrochemical design requirements</topic><topic>electrochemical wastewater treatment</topic><topic>Electrolytes</topic><topic>Finite element method</topic><topic>High current</topic><topic>Inductors</topic><topic>Integrated circuit modeling</topic><topic>integrated magnetic (IM) design</topic><topic>Magnetic structure</topic><topic>Magnetics</topic><topic>Mining industry</topic><topic>Power converters</topic><topic>Wastewater treatment</topic><topic>Water treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elsahwi, Essam S.</creatorcontrib><creatorcontrib>Ruda, Harry E.</creatorcontrib><creatorcontrib>Dawson, Francis P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industry applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Elsahwi, Essam S.</au><au>Ruda, Harry E.</au><au>Dawson, Francis P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Principles and Design of an Integrated Magnetics Structure for Electrochemical Applications</atitle><jtitle>IEEE transactions on industry applications</jtitle><stitle>TIA</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>56</volume><issue>5</issue><spage>5645</spage><epage>5655</epage><pages>5645-5655</pages><issn>0093-9994</issn><eissn>1939-9367</eissn><coden>ITIACR</coden><abstract>This article presents an integrated magnetics (IM) structure that functions as a current-doubler rectifier (CDR). The proposed IM-CDR is suitable for electrochemical wastewater treatment applications where low-voltage high-current power converters are required for effective treatment. Electrochemical wastewater treatment is a promising technology that has several advantages compared to the traditional biological methods currently employed in the mining industry. However, the technology suffers from high operating cost due to the conduction losses associated with long cables or busbars that run from the source to the treatment cell carrying high current. The IM approach integrates the transformer and two filtering inductors of the discrete CDR (D-CDR) into one magnetic structure which allows for the secondary side of the structure to be packaged with the electrochemical cell, thus resulting in a HVdc distribution network, and as a result, lowers the conduction losses while still benefiting from the ripple cancellation offered by the CDR architecture. This article presents a design example to help the designer relate the required electrical characteristics of the D-CDR to the design parameters of the IM-CDR. A finite element analysis simulation is performed on the IM structure to validate the derived electrical equivalent model. The IM structure is also experimentally built in our lab, achieving a 97.8% efficiency over a 20-40 A load range.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIA.2020.2999554</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1918-5749</orcidid><orcidid>https://orcid.org/0000-0001-6883-7753</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0093-9994
ispartof IEEE transactions on industry applications, 2020-09, Vol.56 (5), p.5645-5655
issn 0093-9994
1939-9367
language eng
recordid cdi_proquest_journals_2444617382
source IEEE Electronic Library (IEL)
subjects Busbars
Cables
Cathodes
Computer simulation
Conduction losses
Contactless energy transfer
current-doubler rectifier (CDR)
Design
Design parameters
Electrochemical cells
electrochemical design requirements
electrochemical wastewater treatment
Electrolytes
Finite element method
High current
Inductors
Integrated circuit modeling
integrated magnetic (IM) design
Magnetic structure
Magnetics
Mining industry
Power converters
Wastewater treatment
Water treatment
title Principles and Design of an Integrated Magnetics Structure for Electrochemical Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T00%3A24%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Principles%20and%20Design%20of%20an%20Integrated%20Magnetics%20Structure%20for%20Electrochemical%20Applications&rft.jtitle=IEEE%20transactions%20on%20industry%20applications&rft.au=Elsahwi,%20Essam%20S.&rft.date=2020-09-01&rft.volume=56&rft.issue=5&rft.spage=5645&rft.epage=5655&rft.pages=5645-5655&rft.issn=0093-9994&rft.eissn=1939-9367&rft.coden=ITIACR&rft_id=info:doi/10.1109/TIA.2020.2999554&rft_dat=%3Cproquest_RIE%3E2444617382%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2444617382&rft_id=info:pmid/&rft_ieee_id=9106787&rfr_iscdi=true