Principles and Design of an Integrated Magnetics Structure for Electrochemical Applications
This article presents an integrated magnetics (IM) structure that functions as a current-doubler rectifier (CDR). The proposed IM-CDR is suitable for electrochemical wastewater treatment applications where low-voltage high-current power converters are required for effective treatment. Electrochemica...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industry applications 2020-09, Vol.56 (5), p.5645-5655 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5655 |
---|---|
container_issue | 5 |
container_start_page | 5645 |
container_title | IEEE transactions on industry applications |
container_volume | 56 |
creator | Elsahwi, Essam S. Ruda, Harry E. Dawson, Francis P. |
description | This article presents an integrated magnetics (IM) structure that functions as a current-doubler rectifier (CDR). The proposed IM-CDR is suitable for electrochemical wastewater treatment applications where low-voltage high-current power converters are required for effective treatment. Electrochemical wastewater treatment is a promising technology that has several advantages compared to the traditional biological methods currently employed in the mining industry. However, the technology suffers from high operating cost due to the conduction losses associated with long cables or busbars that run from the source to the treatment cell carrying high current. The IM approach integrates the transformer and two filtering inductors of the discrete CDR (D-CDR) into one magnetic structure which allows for the secondary side of the structure to be packaged with the electrochemical cell, thus resulting in a HVdc distribution network, and as a result, lowers the conduction losses while still benefiting from the ripple cancellation offered by the CDR architecture. This article presents a design example to help the designer relate the required electrical characteristics of the D-CDR to the design parameters of the IM-CDR. A finite element analysis simulation is performed on the IM structure to validate the derived electrical equivalent model. The IM structure is also experimentally built in our lab, achieving a 97.8% efficiency over a 20-40 A load range. |
doi_str_mv | 10.1109/TIA.2020.2999554 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2444617382</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9106787</ieee_id><sourcerecordid>2444617382</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-aca9075c308498a96192d5737225929c16f34d9835a75d0cfadb08c04b786f7c3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wUvA89bJ12bnWGrVQkXBevIQ0my2btnurkl68N-7pcXTzDDPOwMPIbcMJowBPqwW0wkHDhOOiErJMzJiKDBDketzMgJAkQ0beUmuYtwCMKmYHJGv91C3ru4bH6ltS_roY71paVcNE120yW-CTb6kr3bT-lS7SD9S2Lu0D55WXaDzxrsUOvftd7WzDZ32fTM0qe7aeE0uKttEf3OqY_L5NF_NXrLl2_NiNl1mjiNLmXUWQSsnoJBYWMwZ8lJpoTlXyNGxvBKyxEIoq1UJrrLlGgoHcq2LvNJOjMn98W4fup-9j8lsu31oh5eGSylzpkXBBwqOlAtdjMFXpg_1zoZfw8AcFJpBoTkoNCeFQ-TuGKm99_84Msh1ocUfm1NspA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2444617382</pqid></control><display><type>article</type><title>Principles and Design of an Integrated Magnetics Structure for Electrochemical Applications</title><source>IEEE Electronic Library (IEL)</source><creator>Elsahwi, Essam S. ; Ruda, Harry E. ; Dawson, Francis P.</creator><creatorcontrib>Elsahwi, Essam S. ; Ruda, Harry E. ; Dawson, Francis P.</creatorcontrib><description>This article presents an integrated magnetics (IM) structure that functions as a current-doubler rectifier (CDR). The proposed IM-CDR is suitable for electrochemical wastewater treatment applications where low-voltage high-current power converters are required for effective treatment. Electrochemical wastewater treatment is a promising technology that has several advantages compared to the traditional biological methods currently employed in the mining industry. However, the technology suffers from high operating cost due to the conduction losses associated with long cables or busbars that run from the source to the treatment cell carrying high current. The IM approach integrates the transformer and two filtering inductors of the discrete CDR (D-CDR) into one magnetic structure which allows for the secondary side of the structure to be packaged with the electrochemical cell, thus resulting in a HVdc distribution network, and as a result, lowers the conduction losses while still benefiting from the ripple cancellation offered by the CDR architecture. This article presents a design example to help the designer relate the required electrical characteristics of the D-CDR to the design parameters of the IM-CDR. A finite element analysis simulation is performed on the IM structure to validate the derived electrical equivalent model. The IM structure is also experimentally built in our lab, achieving a 97.8% efficiency over a 20-40 A load range.</description><identifier>ISSN: 0093-9994</identifier><identifier>EISSN: 1939-9367</identifier><identifier>DOI: 10.1109/TIA.2020.2999554</identifier><identifier>CODEN: ITIACR</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Busbars ; Cables ; Cathodes ; Computer simulation ; Conduction losses ; Contactless energy transfer ; current-doubler rectifier (CDR) ; Design ; Design parameters ; Electrochemical cells ; electrochemical design requirements ; electrochemical wastewater treatment ; Electrolytes ; Finite element method ; High current ; Inductors ; Integrated circuit modeling ; integrated magnetic (IM) design ; Magnetic structure ; Magnetics ; Mining industry ; Power converters ; Wastewater treatment ; Water treatment</subject><ispartof>IEEE transactions on industry applications, 2020-09, Vol.56 (5), p.5645-5655</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-aca9075c308498a96192d5737225929c16f34d9835a75d0cfadb08c04b786f7c3</citedby><cites>FETCH-LOGICAL-c291t-aca9075c308498a96192d5737225929c16f34d9835a75d0cfadb08c04b786f7c3</cites><orcidid>0000-0003-1918-5749 ; 0000-0001-6883-7753</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9106787$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9106787$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Elsahwi, Essam S.</creatorcontrib><creatorcontrib>Ruda, Harry E.</creatorcontrib><creatorcontrib>Dawson, Francis P.</creatorcontrib><title>Principles and Design of an Integrated Magnetics Structure for Electrochemical Applications</title><title>IEEE transactions on industry applications</title><addtitle>TIA</addtitle><description>This article presents an integrated magnetics (IM) structure that functions as a current-doubler rectifier (CDR). The proposed IM-CDR is suitable for electrochemical wastewater treatment applications where low-voltage high-current power converters are required for effective treatment. Electrochemical wastewater treatment is a promising technology that has several advantages compared to the traditional biological methods currently employed in the mining industry. However, the technology suffers from high operating cost due to the conduction losses associated with long cables or busbars that run from the source to the treatment cell carrying high current. The IM approach integrates the transformer and two filtering inductors of the discrete CDR (D-CDR) into one magnetic structure which allows for the secondary side of the structure to be packaged with the electrochemical cell, thus resulting in a HVdc distribution network, and as a result, lowers the conduction losses while still benefiting from the ripple cancellation offered by the CDR architecture. This article presents a design example to help the designer relate the required electrical characteristics of the D-CDR to the design parameters of the IM-CDR. A finite element analysis simulation is performed on the IM structure to validate the derived electrical equivalent model. The IM structure is also experimentally built in our lab, achieving a 97.8% efficiency over a 20-40 A load range.</description><subject>Busbars</subject><subject>Cables</subject><subject>Cathodes</subject><subject>Computer simulation</subject><subject>Conduction losses</subject><subject>Contactless energy transfer</subject><subject>current-doubler rectifier (CDR)</subject><subject>Design</subject><subject>Design parameters</subject><subject>Electrochemical cells</subject><subject>electrochemical design requirements</subject><subject>electrochemical wastewater treatment</subject><subject>Electrolytes</subject><subject>Finite element method</subject><subject>High current</subject><subject>Inductors</subject><subject>Integrated circuit modeling</subject><subject>integrated magnetic (IM) design</subject><subject>Magnetic structure</subject><subject>Magnetics</subject><subject>Mining industry</subject><subject>Power converters</subject><subject>Wastewater treatment</subject><subject>Water treatment</subject><issn>0093-9994</issn><issn>1939-9367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wUvA89bJ12bnWGrVQkXBevIQ0my2btnurkl68N-7pcXTzDDPOwMPIbcMJowBPqwW0wkHDhOOiErJMzJiKDBDketzMgJAkQ0beUmuYtwCMKmYHJGv91C3ru4bH6ltS_roY71paVcNE120yW-CTb6kr3bT-lS7SD9S2Lu0D55WXaDzxrsUOvftd7WzDZ32fTM0qe7aeE0uKttEf3OqY_L5NF_NXrLl2_NiNl1mjiNLmXUWQSsnoJBYWMwZ8lJpoTlXyNGxvBKyxEIoq1UJrrLlGgoHcq2LvNJOjMn98W4fup-9j8lsu31oh5eGSylzpkXBBwqOlAtdjMFXpg_1zoZfw8AcFJpBoTkoNCeFQ-TuGKm99_84Msh1ocUfm1NspA</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Elsahwi, Essam S.</creator><creator>Ruda, Harry E.</creator><creator>Dawson, Francis P.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1918-5749</orcidid><orcidid>https://orcid.org/0000-0001-6883-7753</orcidid></search><sort><creationdate>20200901</creationdate><title>Principles and Design of an Integrated Magnetics Structure for Electrochemical Applications</title><author>Elsahwi, Essam S. ; Ruda, Harry E. ; Dawson, Francis P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-aca9075c308498a96192d5737225929c16f34d9835a75d0cfadb08c04b786f7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Busbars</topic><topic>Cables</topic><topic>Cathodes</topic><topic>Computer simulation</topic><topic>Conduction losses</topic><topic>Contactless energy transfer</topic><topic>current-doubler rectifier (CDR)</topic><topic>Design</topic><topic>Design parameters</topic><topic>Electrochemical cells</topic><topic>electrochemical design requirements</topic><topic>electrochemical wastewater treatment</topic><topic>Electrolytes</topic><topic>Finite element method</topic><topic>High current</topic><topic>Inductors</topic><topic>Integrated circuit modeling</topic><topic>integrated magnetic (IM) design</topic><topic>Magnetic structure</topic><topic>Magnetics</topic><topic>Mining industry</topic><topic>Power converters</topic><topic>Wastewater treatment</topic><topic>Water treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elsahwi, Essam S.</creatorcontrib><creatorcontrib>Ruda, Harry E.</creatorcontrib><creatorcontrib>Dawson, Francis P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industry applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Elsahwi, Essam S.</au><au>Ruda, Harry E.</au><au>Dawson, Francis P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Principles and Design of an Integrated Magnetics Structure for Electrochemical Applications</atitle><jtitle>IEEE transactions on industry applications</jtitle><stitle>TIA</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>56</volume><issue>5</issue><spage>5645</spage><epage>5655</epage><pages>5645-5655</pages><issn>0093-9994</issn><eissn>1939-9367</eissn><coden>ITIACR</coden><abstract>This article presents an integrated magnetics (IM) structure that functions as a current-doubler rectifier (CDR). The proposed IM-CDR is suitable for electrochemical wastewater treatment applications where low-voltage high-current power converters are required for effective treatment. Electrochemical wastewater treatment is a promising technology that has several advantages compared to the traditional biological methods currently employed in the mining industry. However, the technology suffers from high operating cost due to the conduction losses associated with long cables or busbars that run from the source to the treatment cell carrying high current. The IM approach integrates the transformer and two filtering inductors of the discrete CDR (D-CDR) into one magnetic structure which allows for the secondary side of the structure to be packaged with the electrochemical cell, thus resulting in a HVdc distribution network, and as a result, lowers the conduction losses while still benefiting from the ripple cancellation offered by the CDR architecture. This article presents a design example to help the designer relate the required electrical characteristics of the D-CDR to the design parameters of the IM-CDR. A finite element analysis simulation is performed on the IM structure to validate the derived electrical equivalent model. The IM structure is also experimentally built in our lab, achieving a 97.8% efficiency over a 20-40 A load range.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIA.2020.2999554</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1918-5749</orcidid><orcidid>https://orcid.org/0000-0001-6883-7753</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0093-9994 |
ispartof | IEEE transactions on industry applications, 2020-09, Vol.56 (5), p.5645-5655 |
issn | 0093-9994 1939-9367 |
language | eng |
recordid | cdi_proquest_journals_2444617382 |
source | IEEE Electronic Library (IEL) |
subjects | Busbars Cables Cathodes Computer simulation Conduction losses Contactless energy transfer current-doubler rectifier (CDR) Design Design parameters Electrochemical cells electrochemical design requirements electrochemical wastewater treatment Electrolytes Finite element method High current Inductors Integrated circuit modeling integrated magnetic (IM) design Magnetic structure Magnetics Mining industry Power converters Wastewater treatment Water treatment |
title | Principles and Design of an Integrated Magnetics Structure for Electrochemical Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T00%3A24%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Principles%20and%20Design%20of%20an%20Integrated%20Magnetics%20Structure%20for%20Electrochemical%20Applications&rft.jtitle=IEEE%20transactions%20on%20industry%20applications&rft.au=Elsahwi,%20Essam%20S.&rft.date=2020-09-01&rft.volume=56&rft.issue=5&rft.spage=5645&rft.epage=5655&rft.pages=5645-5655&rft.issn=0093-9994&rft.eissn=1939-9367&rft.coden=ITIACR&rft_id=info:doi/10.1109/TIA.2020.2999554&rft_dat=%3Cproquest_RIE%3E2444617382%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2444617382&rft_id=info:pmid/&rft_ieee_id=9106787&rfr_iscdi=true |