Chemical prelithiation of Al for use as an ambient air compatible and polysulfide resistant anode for Li-ion/S batteries
Lithium-ion/sulfur (Li-ion/S) batteries consisting of metallic lithium-free anodes and sulfur cathodes are promising energy storage solutions. Anode prelithiation enables a Li-ion/S battery assembly with the extensively-developed sulfur cathodes. However, it's very challenging owing to the low...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2020-09, Vol.8 (36), p.18715-1872 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1872 |
---|---|
container_issue | 36 |
container_start_page | 18715 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 8 |
creator | Huang, Yongmin Liu, Chang Wei, Fengyuan Wang, Gongwei Xiao, Li Lu, Juntao Zhuang, Lin |
description | Lithium-ion/sulfur (Li-ion/S) batteries consisting of metallic lithium-free anodes and sulfur cathodes are promising energy storage solutions. Anode prelithiation enables a Li-ion/S battery assembly with the extensively-developed sulfur cathodes. However, it's very challenging owing to the low lithiation potentials of anode materials (
e.g.
Al, 0.32 V
vs.
Li/Li
+
). Here, a free-standing LiAl alloy anode (c-LiAl) is prepared
via
an easy-to-implement chemical prelithiation, by using a newly exploited reagent of lithium 9,9-dimethylfluorene (Li-DiMF) with a lower redox potential of 0.22 V
vs.
Li/Li
+
. Compared with the LiAl anode prepared by electrochemical prelithiation (e-LiAl) and the lithium metal anode by electrodeposition (e-Li/Cu), c-LiAl displays a superior cyclability in the half cell test and high resistance towards polysulfide or ambient-air corrosion. When paired with a sulfur cathode, the resulting Li-ion/S battery with c-LiAl demonstrates a much better cycling performance than the Li-ion/S battery with e-LiAl and the lithium/sulfur battery with e-Li/Cu.
Ambient-air compatible and polysulfide resistant LiAl is prepared by chemical prelithiation and employed as an alternative anode for Li/S batteries. |
doi_str_mv | 10.1039/d0ta06694j |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2444615910</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2444615910</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-4b6ef8df301ea4f4f06805f456a74ca198513a7b8f9fff977636d6e943c31f953</originalsourceid><addsrcrecordid>eNp9kM9LwzAUx4MoOOou3oWIN6EuWdK0OY75m4EH57m8tgnLaJuapOD-ezMn8-a7vBfy4fseH4QuKbmjhMlZQwIQISTfnqDJnGQkzbkUp8e5KM7R1PstiVUQIqScoK_lRnWmhhYPTrUmbAwEY3tsNV60WFuHR68weAw9hq4yqg8YjMO17YZIVm387Bs82Hbnx1abRmGnvPEB9mBv43sfsjJpTJ294wpCUM4of4HONLReTX97gj4eH9bL53T19vSyXKzSmnEeUl4JpYtGM0IVcM01EQXJNM8E5LwGKouMMsirQkuttcxzwUQjlOSsZlTLjCXo5pA7OPs5Kh_KrR1dH1eWc865oJmM8hJ0e6BqZ713SpeDMx24XUlJuZdb3pP14kfua4SvD7Dz9ZH7k18O8dwEXf3HsG8uOYJG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2444615910</pqid></control><display><type>article</type><title>Chemical prelithiation of Al for use as an ambient air compatible and polysulfide resistant anode for Li-ion/S batteries</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Huang, Yongmin ; Liu, Chang ; Wei, Fengyuan ; Wang, Gongwei ; Xiao, Li ; Lu, Juntao ; Zhuang, Lin</creator><creatorcontrib>Huang, Yongmin ; Liu, Chang ; Wei, Fengyuan ; Wang, Gongwei ; Xiao, Li ; Lu, Juntao ; Zhuang, Lin</creatorcontrib><description>Lithium-ion/sulfur (Li-ion/S) batteries consisting of metallic lithium-free anodes and sulfur cathodes are promising energy storage solutions. Anode prelithiation enables a Li-ion/S battery assembly with the extensively-developed sulfur cathodes. However, it's very challenging owing to the low lithiation potentials of anode materials (
e.g.
Al, 0.32 V
vs.
Li/Li
+
). Here, a free-standing LiAl alloy anode (c-LiAl) is prepared
via
an easy-to-implement chemical prelithiation, by using a newly exploited reagent of lithium 9,9-dimethylfluorene (Li-DiMF) with a lower redox potential of 0.22 V
vs.
Li/Li
+
. Compared with the LiAl anode prepared by electrochemical prelithiation (e-LiAl) and the lithium metal anode by electrodeposition (e-Li/Cu), c-LiAl displays a superior cyclability in the half cell test and high resistance towards polysulfide or ambient-air corrosion. When paired with a sulfur cathode, the resulting Li-ion/S battery with c-LiAl demonstrates a much better cycling performance than the Li-ion/S battery with e-LiAl and the lithium/sulfur battery with e-Li/Cu.
Ambient-air compatible and polysulfide resistant LiAl is prepared by chemical prelithiation and employed as an alternative anode for Li/S batteries.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d0ta06694j</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Anodes ; Batteries ; Cathodes ; Copper ; Corrosion resistance ; Electrochemistry ; Electrode materials ; Energy storage ; High resistance ; Lithium ; Lithium ions ; Lithium sulfur batteries ; Polysulfides ; Reagents ; Rechargeable batteries ; Redox potential ; Sulfur</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2020-09, Vol.8 (36), p.18715-1872</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-4b6ef8df301ea4f4f06805f456a74ca198513a7b8f9fff977636d6e943c31f953</citedby><cites>FETCH-LOGICAL-c344t-4b6ef8df301ea4f4f06805f456a74ca198513a7b8f9fff977636d6e943c31f953</cites><orcidid>0000-0002-5642-6735 ; 0000-0001-5520-2695 ; 0000-0002-6416-3138 ; 0000-0002-3248-1270</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Huang, Yongmin</creatorcontrib><creatorcontrib>Liu, Chang</creatorcontrib><creatorcontrib>Wei, Fengyuan</creatorcontrib><creatorcontrib>Wang, Gongwei</creatorcontrib><creatorcontrib>Xiao, Li</creatorcontrib><creatorcontrib>Lu, Juntao</creatorcontrib><creatorcontrib>Zhuang, Lin</creatorcontrib><title>Chemical prelithiation of Al for use as an ambient air compatible and polysulfide resistant anode for Li-ion/S batteries</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Lithium-ion/sulfur (Li-ion/S) batteries consisting of metallic lithium-free anodes and sulfur cathodes are promising energy storage solutions. Anode prelithiation enables a Li-ion/S battery assembly with the extensively-developed sulfur cathodes. However, it's very challenging owing to the low lithiation potentials of anode materials (
e.g.
Al, 0.32 V
vs.
Li/Li
+
). Here, a free-standing LiAl alloy anode (c-LiAl) is prepared
via
an easy-to-implement chemical prelithiation, by using a newly exploited reagent of lithium 9,9-dimethylfluorene (Li-DiMF) with a lower redox potential of 0.22 V
vs.
Li/Li
+
. Compared with the LiAl anode prepared by electrochemical prelithiation (e-LiAl) and the lithium metal anode by electrodeposition (e-Li/Cu), c-LiAl displays a superior cyclability in the half cell test and high resistance towards polysulfide or ambient-air corrosion. When paired with a sulfur cathode, the resulting Li-ion/S battery with c-LiAl demonstrates a much better cycling performance than the Li-ion/S battery with e-LiAl and the lithium/sulfur battery with e-Li/Cu.
Ambient-air compatible and polysulfide resistant LiAl is prepared by chemical prelithiation and employed as an alternative anode for Li/S batteries.</description><subject>Anodes</subject><subject>Batteries</subject><subject>Cathodes</subject><subject>Copper</subject><subject>Corrosion resistance</subject><subject>Electrochemistry</subject><subject>Electrode materials</subject><subject>Energy storage</subject><subject>High resistance</subject><subject>Lithium</subject><subject>Lithium ions</subject><subject>Lithium sulfur batteries</subject><subject>Polysulfides</subject><subject>Reagents</subject><subject>Rechargeable batteries</subject><subject>Redox potential</subject><subject>Sulfur</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM9LwzAUx4MoOOou3oWIN6EuWdK0OY75m4EH57m8tgnLaJuapOD-ezMn8-a7vBfy4fseH4QuKbmjhMlZQwIQISTfnqDJnGQkzbkUp8e5KM7R1PstiVUQIqScoK_lRnWmhhYPTrUmbAwEY3tsNV60WFuHR68weAw9hq4yqg8YjMO17YZIVm387Bs82Hbnx1abRmGnvPEB9mBv43sfsjJpTJ294wpCUM4of4HONLReTX97gj4eH9bL53T19vSyXKzSmnEeUl4JpYtGM0IVcM01EQXJNM8E5LwGKouMMsirQkuttcxzwUQjlOSsZlTLjCXo5pA7OPs5Kh_KrR1dH1eWc865oJmM8hJ0e6BqZ713SpeDMx24XUlJuZdb3pP14kfua4SvD7Dz9ZH7k18O8dwEXf3HsG8uOYJG</recordid><startdate>20200928</startdate><enddate>20200928</enddate><creator>Huang, Yongmin</creator><creator>Liu, Chang</creator><creator>Wei, Fengyuan</creator><creator>Wang, Gongwei</creator><creator>Xiao, Li</creator><creator>Lu, Juntao</creator><creator>Zhuang, Lin</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-5642-6735</orcidid><orcidid>https://orcid.org/0000-0001-5520-2695</orcidid><orcidid>https://orcid.org/0000-0002-6416-3138</orcidid><orcidid>https://orcid.org/0000-0002-3248-1270</orcidid></search><sort><creationdate>20200928</creationdate><title>Chemical prelithiation of Al for use as an ambient air compatible and polysulfide resistant anode for Li-ion/S batteries</title><author>Huang, Yongmin ; Liu, Chang ; Wei, Fengyuan ; Wang, Gongwei ; Xiao, Li ; Lu, Juntao ; Zhuang, Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-4b6ef8df301ea4f4f06805f456a74ca198513a7b8f9fff977636d6e943c31f953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anodes</topic><topic>Batteries</topic><topic>Cathodes</topic><topic>Copper</topic><topic>Corrosion resistance</topic><topic>Electrochemistry</topic><topic>Electrode materials</topic><topic>Energy storage</topic><topic>High resistance</topic><topic>Lithium</topic><topic>Lithium ions</topic><topic>Lithium sulfur batteries</topic><topic>Polysulfides</topic><topic>Reagents</topic><topic>Rechargeable batteries</topic><topic>Redox potential</topic><topic>Sulfur</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Yongmin</creatorcontrib><creatorcontrib>Liu, Chang</creatorcontrib><creatorcontrib>Wei, Fengyuan</creatorcontrib><creatorcontrib>Wang, Gongwei</creatorcontrib><creatorcontrib>Xiao, Li</creatorcontrib><creatorcontrib>Lu, Juntao</creatorcontrib><creatorcontrib>Zhuang, Lin</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Yongmin</au><au>Liu, Chang</au><au>Wei, Fengyuan</au><au>Wang, Gongwei</au><au>Xiao, Li</au><au>Lu, Juntao</au><au>Zhuang, Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemical prelithiation of Al for use as an ambient air compatible and polysulfide resistant anode for Li-ion/S batteries</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2020-09-28</date><risdate>2020</risdate><volume>8</volume><issue>36</issue><spage>18715</spage><epage>1872</epage><pages>18715-1872</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Lithium-ion/sulfur (Li-ion/S) batteries consisting of metallic lithium-free anodes and sulfur cathodes are promising energy storage solutions. Anode prelithiation enables a Li-ion/S battery assembly with the extensively-developed sulfur cathodes. However, it's very challenging owing to the low lithiation potentials of anode materials (
e.g.
Al, 0.32 V
vs.
Li/Li
+
). Here, a free-standing LiAl alloy anode (c-LiAl) is prepared
via
an easy-to-implement chemical prelithiation, by using a newly exploited reagent of lithium 9,9-dimethylfluorene (Li-DiMF) with a lower redox potential of 0.22 V
vs.
Li/Li
+
. Compared with the LiAl anode prepared by electrochemical prelithiation (e-LiAl) and the lithium metal anode by electrodeposition (e-Li/Cu), c-LiAl displays a superior cyclability in the half cell test and high resistance towards polysulfide or ambient-air corrosion. When paired with a sulfur cathode, the resulting Li-ion/S battery with c-LiAl demonstrates a much better cycling performance than the Li-ion/S battery with e-LiAl and the lithium/sulfur battery with e-Li/Cu.
Ambient-air compatible and polysulfide resistant LiAl is prepared by chemical prelithiation and employed as an alternative anode for Li/S batteries.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0ta06694j</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-5642-6735</orcidid><orcidid>https://orcid.org/0000-0001-5520-2695</orcidid><orcidid>https://orcid.org/0000-0002-6416-3138</orcidid><orcidid>https://orcid.org/0000-0002-3248-1270</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2020-09, Vol.8 (36), p.18715-1872 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_proquest_journals_2444615910 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Anodes Batteries Cathodes Copper Corrosion resistance Electrochemistry Electrode materials Energy storage High resistance Lithium Lithium ions Lithium sulfur batteries Polysulfides Reagents Rechargeable batteries Redox potential Sulfur |
title | Chemical prelithiation of Al for use as an ambient air compatible and polysulfide resistant anode for Li-ion/S batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T01%3A25%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemical%20prelithiation%20of%20Al%20for%20use%20as%20an%20ambient%20air%20compatible%20and%20polysulfide%20resistant%20anode%20for%20Li-ion/S%20batteries&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Huang,%20Yongmin&rft.date=2020-09-28&rft.volume=8&rft.issue=36&rft.spage=18715&rft.epage=1872&rft.pages=18715-1872&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d0ta06694j&rft_dat=%3Cproquest_cross%3E2444615910%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2444615910&rft_id=info:pmid/&rfr_iscdi=true |