Chemical prelithiation of Al for use as an ambient air compatible and polysulfide resistant anode for Li-ion/S batteries

Lithium-ion/sulfur (Li-ion/S) batteries consisting of metallic lithium-free anodes and sulfur cathodes are promising energy storage solutions. Anode prelithiation enables a Li-ion/S battery assembly with the extensively-developed sulfur cathodes. However, it's very challenging owing to the low...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2020-09, Vol.8 (36), p.18715-1872
Hauptverfasser: Huang, Yongmin, Liu, Chang, Wei, Fengyuan, Wang, Gongwei, Xiao, Li, Lu, Juntao, Zhuang, Lin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1872
container_issue 36
container_start_page 18715
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 8
creator Huang, Yongmin
Liu, Chang
Wei, Fengyuan
Wang, Gongwei
Xiao, Li
Lu, Juntao
Zhuang, Lin
description Lithium-ion/sulfur (Li-ion/S) batteries consisting of metallic lithium-free anodes and sulfur cathodes are promising energy storage solutions. Anode prelithiation enables a Li-ion/S battery assembly with the extensively-developed sulfur cathodes. However, it's very challenging owing to the low lithiation potentials of anode materials ( e.g. Al, 0.32 V vs. Li/Li + ). Here, a free-standing LiAl alloy anode (c-LiAl) is prepared via an easy-to-implement chemical prelithiation, by using a newly exploited reagent of lithium 9,9-dimethylfluorene (Li-DiMF) with a lower redox potential of 0.22 V vs. Li/Li + . Compared with the LiAl anode prepared by electrochemical prelithiation (e-LiAl) and the lithium metal anode by electrodeposition (e-Li/Cu), c-LiAl displays a superior cyclability in the half cell test and high resistance towards polysulfide or ambient-air corrosion. When paired with a sulfur cathode, the resulting Li-ion/S battery with c-LiAl demonstrates a much better cycling performance than the Li-ion/S battery with e-LiAl and the lithium/sulfur battery with e-Li/Cu. Ambient-air compatible and polysulfide resistant LiAl is prepared by chemical prelithiation and employed as an alternative anode for Li/S batteries.
doi_str_mv 10.1039/d0ta06694j
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2444615910</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2444615910</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-4b6ef8df301ea4f4f06805f456a74ca198513a7b8f9fff977636d6e943c31f953</originalsourceid><addsrcrecordid>eNp9kM9LwzAUx4MoOOou3oWIN6EuWdK0OY75m4EH57m8tgnLaJuapOD-ezMn8-a7vBfy4fseH4QuKbmjhMlZQwIQISTfnqDJnGQkzbkUp8e5KM7R1PstiVUQIqScoK_lRnWmhhYPTrUmbAwEY3tsNV60WFuHR68weAw9hq4yqg8YjMO17YZIVm387Bs82Hbnx1abRmGnvPEB9mBv43sfsjJpTJ294wpCUM4of4HONLReTX97gj4eH9bL53T19vSyXKzSmnEeUl4JpYtGM0IVcM01EQXJNM8E5LwGKouMMsirQkuttcxzwUQjlOSsZlTLjCXo5pA7OPs5Kh_KrR1dH1eWc865oJmM8hJ0e6BqZ713SpeDMx24XUlJuZdb3pP14kfua4SvD7Dz9ZH7k18O8dwEXf3HsG8uOYJG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2444615910</pqid></control><display><type>article</type><title>Chemical prelithiation of Al for use as an ambient air compatible and polysulfide resistant anode for Li-ion/S batteries</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Huang, Yongmin ; Liu, Chang ; Wei, Fengyuan ; Wang, Gongwei ; Xiao, Li ; Lu, Juntao ; Zhuang, Lin</creator><creatorcontrib>Huang, Yongmin ; Liu, Chang ; Wei, Fengyuan ; Wang, Gongwei ; Xiao, Li ; Lu, Juntao ; Zhuang, Lin</creatorcontrib><description>Lithium-ion/sulfur (Li-ion/S) batteries consisting of metallic lithium-free anodes and sulfur cathodes are promising energy storage solutions. Anode prelithiation enables a Li-ion/S battery assembly with the extensively-developed sulfur cathodes. However, it's very challenging owing to the low lithiation potentials of anode materials ( e.g. Al, 0.32 V vs. Li/Li + ). Here, a free-standing LiAl alloy anode (c-LiAl) is prepared via an easy-to-implement chemical prelithiation, by using a newly exploited reagent of lithium 9,9-dimethylfluorene (Li-DiMF) with a lower redox potential of 0.22 V vs. Li/Li + . Compared with the LiAl anode prepared by electrochemical prelithiation (e-LiAl) and the lithium metal anode by electrodeposition (e-Li/Cu), c-LiAl displays a superior cyclability in the half cell test and high resistance towards polysulfide or ambient-air corrosion. When paired with a sulfur cathode, the resulting Li-ion/S battery with c-LiAl demonstrates a much better cycling performance than the Li-ion/S battery with e-LiAl and the lithium/sulfur battery with e-Li/Cu. Ambient-air compatible and polysulfide resistant LiAl is prepared by chemical prelithiation and employed as an alternative anode for Li/S batteries.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d0ta06694j</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Anodes ; Batteries ; Cathodes ; Copper ; Corrosion resistance ; Electrochemistry ; Electrode materials ; Energy storage ; High resistance ; Lithium ; Lithium ions ; Lithium sulfur batteries ; Polysulfides ; Reagents ; Rechargeable batteries ; Redox potential ; Sulfur</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2020-09, Vol.8 (36), p.18715-1872</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-4b6ef8df301ea4f4f06805f456a74ca198513a7b8f9fff977636d6e943c31f953</citedby><cites>FETCH-LOGICAL-c344t-4b6ef8df301ea4f4f06805f456a74ca198513a7b8f9fff977636d6e943c31f953</cites><orcidid>0000-0002-5642-6735 ; 0000-0001-5520-2695 ; 0000-0002-6416-3138 ; 0000-0002-3248-1270</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Huang, Yongmin</creatorcontrib><creatorcontrib>Liu, Chang</creatorcontrib><creatorcontrib>Wei, Fengyuan</creatorcontrib><creatorcontrib>Wang, Gongwei</creatorcontrib><creatorcontrib>Xiao, Li</creatorcontrib><creatorcontrib>Lu, Juntao</creatorcontrib><creatorcontrib>Zhuang, Lin</creatorcontrib><title>Chemical prelithiation of Al for use as an ambient air compatible and polysulfide resistant anode for Li-ion/S batteries</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Lithium-ion/sulfur (Li-ion/S) batteries consisting of metallic lithium-free anodes and sulfur cathodes are promising energy storage solutions. Anode prelithiation enables a Li-ion/S battery assembly with the extensively-developed sulfur cathodes. However, it's very challenging owing to the low lithiation potentials of anode materials ( e.g. Al, 0.32 V vs. Li/Li + ). Here, a free-standing LiAl alloy anode (c-LiAl) is prepared via an easy-to-implement chemical prelithiation, by using a newly exploited reagent of lithium 9,9-dimethylfluorene (Li-DiMF) with a lower redox potential of 0.22 V vs. Li/Li + . Compared with the LiAl anode prepared by electrochemical prelithiation (e-LiAl) and the lithium metal anode by electrodeposition (e-Li/Cu), c-LiAl displays a superior cyclability in the half cell test and high resistance towards polysulfide or ambient-air corrosion. When paired with a sulfur cathode, the resulting Li-ion/S battery with c-LiAl demonstrates a much better cycling performance than the Li-ion/S battery with e-LiAl and the lithium/sulfur battery with e-Li/Cu. Ambient-air compatible and polysulfide resistant LiAl is prepared by chemical prelithiation and employed as an alternative anode for Li/S batteries.</description><subject>Anodes</subject><subject>Batteries</subject><subject>Cathodes</subject><subject>Copper</subject><subject>Corrosion resistance</subject><subject>Electrochemistry</subject><subject>Electrode materials</subject><subject>Energy storage</subject><subject>High resistance</subject><subject>Lithium</subject><subject>Lithium ions</subject><subject>Lithium sulfur batteries</subject><subject>Polysulfides</subject><subject>Reagents</subject><subject>Rechargeable batteries</subject><subject>Redox potential</subject><subject>Sulfur</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM9LwzAUx4MoOOou3oWIN6EuWdK0OY75m4EH57m8tgnLaJuapOD-ezMn8-a7vBfy4fseH4QuKbmjhMlZQwIQISTfnqDJnGQkzbkUp8e5KM7R1PstiVUQIqScoK_lRnWmhhYPTrUmbAwEY3tsNV60WFuHR68weAw9hq4yqg8YjMO17YZIVm387Bs82Hbnx1abRmGnvPEB9mBv43sfsjJpTJ294wpCUM4of4HONLReTX97gj4eH9bL53T19vSyXKzSmnEeUl4JpYtGM0IVcM01EQXJNM8E5LwGKouMMsirQkuttcxzwUQjlOSsZlTLjCXo5pA7OPs5Kh_KrR1dH1eWc865oJmM8hJ0e6BqZ713SpeDMx24XUlJuZdb3pP14kfua4SvD7Dz9ZH7k18O8dwEXf3HsG8uOYJG</recordid><startdate>20200928</startdate><enddate>20200928</enddate><creator>Huang, Yongmin</creator><creator>Liu, Chang</creator><creator>Wei, Fengyuan</creator><creator>Wang, Gongwei</creator><creator>Xiao, Li</creator><creator>Lu, Juntao</creator><creator>Zhuang, Lin</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-5642-6735</orcidid><orcidid>https://orcid.org/0000-0001-5520-2695</orcidid><orcidid>https://orcid.org/0000-0002-6416-3138</orcidid><orcidid>https://orcid.org/0000-0002-3248-1270</orcidid></search><sort><creationdate>20200928</creationdate><title>Chemical prelithiation of Al for use as an ambient air compatible and polysulfide resistant anode for Li-ion/S batteries</title><author>Huang, Yongmin ; Liu, Chang ; Wei, Fengyuan ; Wang, Gongwei ; Xiao, Li ; Lu, Juntao ; Zhuang, Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-4b6ef8df301ea4f4f06805f456a74ca198513a7b8f9fff977636d6e943c31f953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anodes</topic><topic>Batteries</topic><topic>Cathodes</topic><topic>Copper</topic><topic>Corrosion resistance</topic><topic>Electrochemistry</topic><topic>Electrode materials</topic><topic>Energy storage</topic><topic>High resistance</topic><topic>Lithium</topic><topic>Lithium ions</topic><topic>Lithium sulfur batteries</topic><topic>Polysulfides</topic><topic>Reagents</topic><topic>Rechargeable batteries</topic><topic>Redox potential</topic><topic>Sulfur</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Yongmin</creatorcontrib><creatorcontrib>Liu, Chang</creatorcontrib><creatorcontrib>Wei, Fengyuan</creatorcontrib><creatorcontrib>Wang, Gongwei</creatorcontrib><creatorcontrib>Xiao, Li</creatorcontrib><creatorcontrib>Lu, Juntao</creatorcontrib><creatorcontrib>Zhuang, Lin</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Yongmin</au><au>Liu, Chang</au><au>Wei, Fengyuan</au><au>Wang, Gongwei</au><au>Xiao, Li</au><au>Lu, Juntao</au><au>Zhuang, Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemical prelithiation of Al for use as an ambient air compatible and polysulfide resistant anode for Li-ion/S batteries</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2020-09-28</date><risdate>2020</risdate><volume>8</volume><issue>36</issue><spage>18715</spage><epage>1872</epage><pages>18715-1872</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Lithium-ion/sulfur (Li-ion/S) batteries consisting of metallic lithium-free anodes and sulfur cathodes are promising energy storage solutions. Anode prelithiation enables a Li-ion/S battery assembly with the extensively-developed sulfur cathodes. However, it's very challenging owing to the low lithiation potentials of anode materials ( e.g. Al, 0.32 V vs. Li/Li + ). Here, a free-standing LiAl alloy anode (c-LiAl) is prepared via an easy-to-implement chemical prelithiation, by using a newly exploited reagent of lithium 9,9-dimethylfluorene (Li-DiMF) with a lower redox potential of 0.22 V vs. Li/Li + . Compared with the LiAl anode prepared by electrochemical prelithiation (e-LiAl) and the lithium metal anode by electrodeposition (e-Li/Cu), c-LiAl displays a superior cyclability in the half cell test and high resistance towards polysulfide or ambient-air corrosion. When paired with a sulfur cathode, the resulting Li-ion/S battery with c-LiAl demonstrates a much better cycling performance than the Li-ion/S battery with e-LiAl and the lithium/sulfur battery with e-Li/Cu. Ambient-air compatible and polysulfide resistant LiAl is prepared by chemical prelithiation and employed as an alternative anode for Li/S batteries.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0ta06694j</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-5642-6735</orcidid><orcidid>https://orcid.org/0000-0001-5520-2695</orcidid><orcidid>https://orcid.org/0000-0002-6416-3138</orcidid><orcidid>https://orcid.org/0000-0002-3248-1270</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2020-09, Vol.8 (36), p.18715-1872
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_2444615910
source Royal Society Of Chemistry Journals 2008-
subjects Anodes
Batteries
Cathodes
Copper
Corrosion resistance
Electrochemistry
Electrode materials
Energy storage
High resistance
Lithium
Lithium ions
Lithium sulfur batteries
Polysulfides
Reagents
Rechargeable batteries
Redox potential
Sulfur
title Chemical prelithiation of Al for use as an ambient air compatible and polysulfide resistant anode for Li-ion/S batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T01%3A25%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemical%20prelithiation%20of%20Al%20for%20use%20as%20an%20ambient%20air%20compatible%20and%20polysulfide%20resistant%20anode%20for%20Li-ion/S%20batteries&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Huang,%20Yongmin&rft.date=2020-09-28&rft.volume=8&rft.issue=36&rft.spage=18715&rft.epage=1872&rft.pages=18715-1872&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d0ta06694j&rft_dat=%3Cproquest_cross%3E2444615910%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2444615910&rft_id=info:pmid/&rfr_iscdi=true