Adaptive Offloading for Time-Critical Tasks in Heterogeneous Internet of Vehicles

With the recent development of wireless communication, sensing, and computing technologies, Internet of Vehicles (IoV) has attracted great attention in both academia and industry. Nevertheless, it is challenging to process time-critical tasks due to unique characteristics of IoV, including heterogen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE internet of things journal 2020-09, Vol.7 (9), p.7999-8011
Hauptverfasser: Liu, Chunhui, Liu, Kai, Guo, Songtao, Xie, Ruitao, Lee, Victor C. S., Son, Sang H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8011
container_issue 9
container_start_page 7999
container_title IEEE internet of things journal
container_volume 7
creator Liu, Chunhui
Liu, Kai
Guo, Songtao
Xie, Ruitao
Lee, Victor C. S.
Son, Sang H.
description With the recent development of wireless communication, sensing, and computing technologies, Internet of Vehicles (IoV) has attracted great attention in both academia and industry. Nevertheless, it is challenging to process time-critical tasks due to unique characteristics of IoV, including heterogeneous computation and communication capacities of network nodes, intermittent wireless connections, unevenly distributed workload, massive data transmission, intensive computation demands, and high mobility of vehicles. In this article, we propose a two-layer vehicular fog computing (VFC) architecture to explore the synergistic effect of the cloud, the static fog, and the mobile fog on processing time-critical tasks in IoV. Then, we give a motivational case study by implementing a prototype of a traffic abnormity detection and warning system, which demonstrates the necessity and urgency of developing adaptive task offloading mechanisms in such a scenario and gives insight into the problem formulation. Furthermore, we formulate the offloading model, aiming at maximizing the completion ratio of time-critical tasks. On this basis, we propose an adaptive task offloading algorithm (ATOA). Specifically, it adaptively categorizes all tasks into four types of pending lists by considering the dynamic requirements and resource constraints, and then tasks in each list will be cooperatively offloaded to different nodes based on their features. Finally, we build the simulation model and give a comprehensive performance evaluation. The results demonstrate the superiority of ATOA.
doi_str_mv 10.1109/JIOT.2020.2997720
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2444611468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9099808</ieee_id><sourcerecordid>2444611468</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-25f5af91d68a01fe921da0ca248634b888ea1cf7f0419ed8734c3971f261284f3</originalsourceid><addsrcrecordid>eNpNkMFKAzEQhoMoWGofQLwEPG_NZNNscixFbaVQhNVriLuTmrrd1GQr-Pbd0iKe5h_4_hn4CLkFNgZg-uFlsSrHnHE25loXBWcXZMBzXmRCSn75L1-TUUobxlhfm4CWA_I6re2u8z9IV841wda-XVMXIi39FrNZ9J2vbENLm74S9S2dY4cxrLHFsE900fZbix0Njr7jp68aTDfkytkm4eg8h-Tt6bGczbPl6nkxmy6ziuu8y_jETazTUEtlGTjUHGrLKsuFkrn4UEqhhcoVjgnQWKsiF1WuC3BcAlfC5UNyf7q7i-F7j6kzm7CPbf_ScCGEBBBS9RScqCqGlCI6s4t-a-OvAWaO8sxRnjnKM2d5fefu1PGI-MdrprViKj8AHSpp6w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2444611468</pqid></control><display><type>article</type><title>Adaptive Offloading for Time-Critical Tasks in Heterogeneous Internet of Vehicles</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Chunhui ; Liu, Kai ; Guo, Songtao ; Xie, Ruitao ; Lee, Victor C. S. ; Son, Sang H.</creator><creatorcontrib>Liu, Chunhui ; Liu, Kai ; Guo, Songtao ; Xie, Ruitao ; Lee, Victor C. S. ; Son, Sang H.</creatorcontrib><description>With the recent development of wireless communication, sensing, and computing technologies, Internet of Vehicles (IoV) has attracted great attention in both academia and industry. Nevertheless, it is challenging to process time-critical tasks due to unique characteristics of IoV, including heterogeneous computation and communication capacities of network nodes, intermittent wireless connections, unevenly distributed workload, massive data transmission, intensive computation demands, and high mobility of vehicles. In this article, we propose a two-layer vehicular fog computing (VFC) architecture to explore the synergistic effect of the cloud, the static fog, and the mobile fog on processing time-critical tasks in IoV. Then, we give a motivational case study by implementing a prototype of a traffic abnormity detection and warning system, which demonstrates the necessity and urgency of developing adaptive task offloading mechanisms in such a scenario and gives insight into the problem formulation. Furthermore, we formulate the offloading model, aiming at maximizing the completion ratio of time-critical tasks. On this basis, we propose an adaptive task offloading algorithm (ATOA). Specifically, it adaptively categorizes all tasks into four types of pending lists by considering the dynamic requirements and resource constraints, and then tasks in each list will be cooperatively offloaded to different nodes based on their features. Finally, we build the simulation model and give a comprehensive performance evaluation. The results demonstrate the superiority of ATOA.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2020.2997720</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptation models ; Adaptive algorithms ; Adaptive offloading ; Adaptive systems ; Cloud computing ; Computation offloading ; Computer architecture ; Computer simulation ; Data transmission ; Delays ; Edge computing ; fog computing ; Internet of Vehicles ; Internet of Vehicles (IoV) ; Nodes ; Performance evaluation ; Synergistic effect ; Task analysis ; Time factors ; time-critical task ; Warning systems ; Wireless communication ; Wireless communications</subject><ispartof>IEEE internet of things journal, 2020-09, Vol.7 (9), p.7999-8011</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-25f5af91d68a01fe921da0ca248634b888ea1cf7f0419ed8734c3971f261284f3</citedby><cites>FETCH-LOGICAL-c293t-25f5af91d68a01fe921da0ca248634b888ea1cf7f0419ed8734c3971f261284f3</cites><orcidid>0000-0001-5865-7724 ; 0000-0003-2596-1257 ; 0000-0003-0070-5951 ; 0000-0002-7198-9261 ; 0000-0002-3105-0006</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9099808$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9099808$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Chunhui</creatorcontrib><creatorcontrib>Liu, Kai</creatorcontrib><creatorcontrib>Guo, Songtao</creatorcontrib><creatorcontrib>Xie, Ruitao</creatorcontrib><creatorcontrib>Lee, Victor C. S.</creatorcontrib><creatorcontrib>Son, Sang H.</creatorcontrib><title>Adaptive Offloading for Time-Critical Tasks in Heterogeneous Internet of Vehicles</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>With the recent development of wireless communication, sensing, and computing technologies, Internet of Vehicles (IoV) has attracted great attention in both academia and industry. Nevertheless, it is challenging to process time-critical tasks due to unique characteristics of IoV, including heterogeneous computation and communication capacities of network nodes, intermittent wireless connections, unevenly distributed workload, massive data transmission, intensive computation demands, and high mobility of vehicles. In this article, we propose a two-layer vehicular fog computing (VFC) architecture to explore the synergistic effect of the cloud, the static fog, and the mobile fog on processing time-critical tasks in IoV. Then, we give a motivational case study by implementing a prototype of a traffic abnormity detection and warning system, which demonstrates the necessity and urgency of developing adaptive task offloading mechanisms in such a scenario and gives insight into the problem formulation. Furthermore, we formulate the offloading model, aiming at maximizing the completion ratio of time-critical tasks. On this basis, we propose an adaptive task offloading algorithm (ATOA). Specifically, it adaptively categorizes all tasks into four types of pending lists by considering the dynamic requirements and resource constraints, and then tasks in each list will be cooperatively offloaded to different nodes based on their features. Finally, we build the simulation model and give a comprehensive performance evaluation. The results demonstrate the superiority of ATOA.</description><subject>Adaptation models</subject><subject>Adaptive algorithms</subject><subject>Adaptive offloading</subject><subject>Adaptive systems</subject><subject>Cloud computing</subject><subject>Computation offloading</subject><subject>Computer architecture</subject><subject>Computer simulation</subject><subject>Data transmission</subject><subject>Delays</subject><subject>Edge computing</subject><subject>fog computing</subject><subject>Internet of Vehicles</subject><subject>Internet of Vehicles (IoV)</subject><subject>Nodes</subject><subject>Performance evaluation</subject><subject>Synergistic effect</subject><subject>Task analysis</subject><subject>Time factors</subject><subject>time-critical task</subject><subject>Warning systems</subject><subject>Wireless communication</subject><subject>Wireless communications</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMFKAzEQhoMoWGofQLwEPG_NZNNscixFbaVQhNVriLuTmrrd1GQr-Pbd0iKe5h_4_hn4CLkFNgZg-uFlsSrHnHE25loXBWcXZMBzXmRCSn75L1-TUUobxlhfm4CWA_I6re2u8z9IV841wda-XVMXIi39FrNZ9J2vbENLm74S9S2dY4cxrLHFsE900fZbix0Njr7jp68aTDfkytkm4eg8h-Tt6bGczbPl6nkxmy6ziuu8y_jETazTUEtlGTjUHGrLKsuFkrn4UEqhhcoVjgnQWKsiF1WuC3BcAlfC5UNyf7q7i-F7j6kzm7CPbf_ScCGEBBBS9RScqCqGlCI6s4t-a-OvAWaO8sxRnjnKM2d5fefu1PGI-MdrprViKj8AHSpp6w</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Liu, Chunhui</creator><creator>Liu, Kai</creator><creator>Guo, Songtao</creator><creator>Xie, Ruitao</creator><creator>Lee, Victor C. S.</creator><creator>Son, Sang H.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5865-7724</orcidid><orcidid>https://orcid.org/0000-0003-2596-1257</orcidid><orcidid>https://orcid.org/0000-0003-0070-5951</orcidid><orcidid>https://orcid.org/0000-0002-7198-9261</orcidid><orcidid>https://orcid.org/0000-0002-3105-0006</orcidid></search><sort><creationdate>20200901</creationdate><title>Adaptive Offloading for Time-Critical Tasks in Heterogeneous Internet of Vehicles</title><author>Liu, Chunhui ; Liu, Kai ; Guo, Songtao ; Xie, Ruitao ; Lee, Victor C. S. ; Son, Sang H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-25f5af91d68a01fe921da0ca248634b888ea1cf7f0419ed8734c3971f261284f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptation models</topic><topic>Adaptive algorithms</topic><topic>Adaptive offloading</topic><topic>Adaptive systems</topic><topic>Cloud computing</topic><topic>Computation offloading</topic><topic>Computer architecture</topic><topic>Computer simulation</topic><topic>Data transmission</topic><topic>Delays</topic><topic>Edge computing</topic><topic>fog computing</topic><topic>Internet of Vehicles</topic><topic>Internet of Vehicles (IoV)</topic><topic>Nodes</topic><topic>Performance evaluation</topic><topic>Synergistic effect</topic><topic>Task analysis</topic><topic>Time factors</topic><topic>time-critical task</topic><topic>Warning systems</topic><topic>Wireless communication</topic><topic>Wireless communications</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, Chunhui</creatorcontrib><creatorcontrib>Liu, Kai</creatorcontrib><creatorcontrib>Guo, Songtao</creatorcontrib><creatorcontrib>Xie, Ruitao</creatorcontrib><creatorcontrib>Lee, Victor C. S.</creatorcontrib><creatorcontrib>Son, Sang H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Chunhui</au><au>Liu, Kai</au><au>Guo, Songtao</au><au>Xie, Ruitao</au><au>Lee, Victor C. S.</au><au>Son, Sang H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Offloading for Time-Critical Tasks in Heterogeneous Internet of Vehicles</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>7</volume><issue>9</issue><spage>7999</spage><epage>8011</epage><pages>7999-8011</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>With the recent development of wireless communication, sensing, and computing technologies, Internet of Vehicles (IoV) has attracted great attention in both academia and industry. Nevertheless, it is challenging to process time-critical tasks due to unique characteristics of IoV, including heterogeneous computation and communication capacities of network nodes, intermittent wireless connections, unevenly distributed workload, massive data transmission, intensive computation demands, and high mobility of vehicles. In this article, we propose a two-layer vehicular fog computing (VFC) architecture to explore the synergistic effect of the cloud, the static fog, and the mobile fog on processing time-critical tasks in IoV. Then, we give a motivational case study by implementing a prototype of a traffic abnormity detection and warning system, which demonstrates the necessity and urgency of developing adaptive task offloading mechanisms in such a scenario and gives insight into the problem formulation. Furthermore, we formulate the offloading model, aiming at maximizing the completion ratio of time-critical tasks. On this basis, we propose an adaptive task offloading algorithm (ATOA). Specifically, it adaptively categorizes all tasks into four types of pending lists by considering the dynamic requirements and resource constraints, and then tasks in each list will be cooperatively offloaded to different nodes based on their features. Finally, we build the simulation model and give a comprehensive performance evaluation. The results demonstrate the superiority of ATOA.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2020.2997720</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5865-7724</orcidid><orcidid>https://orcid.org/0000-0003-2596-1257</orcidid><orcidid>https://orcid.org/0000-0003-0070-5951</orcidid><orcidid>https://orcid.org/0000-0002-7198-9261</orcidid><orcidid>https://orcid.org/0000-0002-3105-0006</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2327-4662
ispartof IEEE internet of things journal, 2020-09, Vol.7 (9), p.7999-8011
issn 2327-4662
2327-4662
language eng
recordid cdi_proquest_journals_2444611468
source IEEE Electronic Library (IEL)
subjects Adaptation models
Adaptive algorithms
Adaptive offloading
Adaptive systems
Cloud computing
Computation offloading
Computer architecture
Computer simulation
Data transmission
Delays
Edge computing
fog computing
Internet of Vehicles
Internet of Vehicles (IoV)
Nodes
Performance evaluation
Synergistic effect
Task analysis
Time factors
time-critical task
Warning systems
Wireless communication
Wireless communications
title Adaptive Offloading for Time-Critical Tasks in Heterogeneous Internet of Vehicles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A22%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Offloading%20for%20Time-Critical%20Tasks%20in%20Heterogeneous%20Internet%20of%20Vehicles&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Liu,%20Chunhui&rft.date=2020-09-01&rft.volume=7&rft.issue=9&rft.spage=7999&rft.epage=8011&rft.pages=7999-8011&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2020.2997720&rft_dat=%3Cproquest_RIE%3E2444611468%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2444611468&rft_id=info:pmid/&rft_ieee_id=9099808&rfr_iscdi=true