Trainable Communication Systems: Concepts and Prototype

We consider a trainable point-to-point communication system, where both transmitter and receiver are implemented as neural networks (NNs), and demonstrate that training on the bit-wise mutual information (BMI) allows seamless integration with practical bit-metric decoding (BMD) receivers, as well as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on communications 2020-09, Vol.68 (9), p.5489-5503
Hauptverfasser: Cammerer, Sebastian, Aoudia, Faycal Ait, Dorner, Sebastian, Stark, Maximilian, Hoydis, Jakob, ten Brink, Stephan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5503
container_issue 9
container_start_page 5489
container_title IEEE transactions on communications
container_volume 68
creator Cammerer, Sebastian
Aoudia, Faycal Ait
Dorner, Sebastian
Stark, Maximilian
Hoydis, Jakob
ten Brink, Stephan
description We consider a trainable point-to-point communication system, where both transmitter and receiver are implemented as neural networks (NNs), and demonstrate that training on the bit-wise mutual information (BMI) allows seamless integration with practical bit-metric decoding (BMD) receivers, as well as joint optimization of constellation shaping and labeling. Moreover, we present a fully differentiable neural iterative demapping and decoding (IDD) structure which achieves significant gains on additive white Gaussian noise (AWGN) channels using a standard 802.11n low-density parity-check (LDPC) code. The strength of this approach is that it can be applied to arbitrary channels without any modifications. Going one step further, we show that careful code design can lead to further performance improvements. Lastly, we show the viability of the proposed system through implementation on software-defined radios (SDRs) and training of the end-to-end system on the actual wireless channel. Experimental results reveal that the proposed method enables significant gains compared to conventional techniques.
doi_str_mv 10.1109/TCOMM.2020.3002915
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2444610139</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9118963</ieee_id><sourcerecordid>2444610139</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-cef4a93d7dd0f212bf7d393ee2c166ae6e2580d4c60107b309670182a2d4083e3</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWKt_QDcDrqfePCYPdzJYFVoqWNchzdyBKZ2HSbrov3dqi6sLh_udAx8h9xRmlIJ5Wper5XLGgMGMAzBDiwsyoUWhc9CFuiQTAAO5VEpfk5sYtwAggPMJUevgms5tdpiVfdvuu8a71PRd9nWICdv4PMadxyHFzHVV9hn61KfDgLfkqna7iHfnOyXf89d1-Z4vVm8f5csi91yIlHushTO8UlUFNaNsU6uKG47IPJXSoURWaKiEl0BBbTgYqYBq5lglQHPkU_J46h1C_7PHmOy234dunLRMCCEp0LFvStjpy4c-xoC1HULTunCwFOxRkP0TZI-C7FnQCD2coAYR_wFDqTaS819bTWC7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2444610139</pqid></control><display><type>article</type><title>Trainable Communication Systems: Concepts and Prototype</title><source>IEEE Electronic Library (IEL)</source><creator>Cammerer, Sebastian ; Aoudia, Faycal Ait ; Dorner, Sebastian ; Stark, Maximilian ; Hoydis, Jakob ; ten Brink, Stephan</creator><creatorcontrib>Cammerer, Sebastian ; Aoudia, Faycal Ait ; Dorner, Sebastian ; Stark, Maximilian ; Hoydis, Jakob ; ten Brink, Stephan</creatorcontrib><description>We consider a trainable point-to-point communication system, where both transmitter and receiver are implemented as neural networks (NNs), and demonstrate that training on the bit-wise mutual information (BMI) allows seamless integration with practical bit-metric decoding (BMD) receivers, as well as joint optimization of constellation shaping and labeling. Moreover, we present a fully differentiable neural iterative demapping and decoding (IDD) structure which achieves significant gains on additive white Gaussian noise (AWGN) channels using a standard 802.11n low-density parity-check (LDPC) code. The strength of this approach is that it can be applied to arbitrary channels without any modifications. Going one step further, we show that careful code design can lead to further performance improvements. Lastly, we show the viability of the proposed system through implementation on software-defined radios (SDRs) and training of the end-to-end system on the actual wireless channel. Experimental results reveal that the proposed method enables significant gains compared to conventional techniques.</description><identifier>ISSN: 0090-6778</identifier><identifier>EISSN: 1558-0857</identifier><identifier>DOI: 10.1109/TCOMM.2020.3002915</identifier><identifier>CODEN: IECMBT</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Autoencoder ; Channels ; code design ; Codes ; Communication systems ; Communications systems ; Constellations ; Decoding ; Design modifications ; end-to-end learning ; Error correcting codes ; geometric shaping ; Iterative decoding ; iterative demapping and decoding ; Neural networks ; Optical transmitters ; Optimization ; Random noise ; Receivers ; Software radio ; software-defined radio ; Training</subject><ispartof>IEEE transactions on communications, 2020-09, Vol.68 (9), p.5489-5503</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-cef4a93d7dd0f212bf7d393ee2c166ae6e2580d4c60107b309670182a2d4083e3</citedby><cites>FETCH-LOGICAL-c344t-cef4a93d7dd0f212bf7d393ee2c166ae6e2580d4c60107b309670182a2d4083e3</cites><orcidid>0000-0003-2723-6171 ; 0000-0002-0438-967X ; 0000-0002-1750-5895 ; 0000-0002-7614-5156 ; 0000-0003-4396-1082 ; 0000-0003-1502-2571</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9118963$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9118963$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cammerer, Sebastian</creatorcontrib><creatorcontrib>Aoudia, Faycal Ait</creatorcontrib><creatorcontrib>Dorner, Sebastian</creatorcontrib><creatorcontrib>Stark, Maximilian</creatorcontrib><creatorcontrib>Hoydis, Jakob</creatorcontrib><creatorcontrib>ten Brink, Stephan</creatorcontrib><title>Trainable Communication Systems: Concepts and Prototype</title><title>IEEE transactions on communications</title><addtitle>TCOMM</addtitle><description>We consider a trainable point-to-point communication system, where both transmitter and receiver are implemented as neural networks (NNs), and demonstrate that training on the bit-wise mutual information (BMI) allows seamless integration with practical bit-metric decoding (BMD) receivers, as well as joint optimization of constellation shaping and labeling. Moreover, we present a fully differentiable neural iterative demapping and decoding (IDD) structure which achieves significant gains on additive white Gaussian noise (AWGN) channels using a standard 802.11n low-density parity-check (LDPC) code. The strength of this approach is that it can be applied to arbitrary channels without any modifications. Going one step further, we show that careful code design can lead to further performance improvements. Lastly, we show the viability of the proposed system through implementation on software-defined radios (SDRs) and training of the end-to-end system on the actual wireless channel. Experimental results reveal that the proposed method enables significant gains compared to conventional techniques.</description><subject>Autoencoder</subject><subject>Channels</subject><subject>code design</subject><subject>Codes</subject><subject>Communication systems</subject><subject>Communications systems</subject><subject>Constellations</subject><subject>Decoding</subject><subject>Design modifications</subject><subject>end-to-end learning</subject><subject>Error correcting codes</subject><subject>geometric shaping</subject><subject>Iterative decoding</subject><subject>iterative demapping and decoding</subject><subject>Neural networks</subject><subject>Optical transmitters</subject><subject>Optimization</subject><subject>Random noise</subject><subject>Receivers</subject><subject>Software radio</subject><subject>software-defined radio</subject><subject>Training</subject><issn>0090-6778</issn><issn>1558-0857</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLAzEUhYMoWKt_QDcDrqfePCYPdzJYFVoqWNchzdyBKZ2HSbrov3dqi6sLh_udAx8h9xRmlIJ5Wper5XLGgMGMAzBDiwsyoUWhc9CFuiQTAAO5VEpfk5sYtwAggPMJUevgms5tdpiVfdvuu8a71PRd9nWICdv4PMadxyHFzHVV9hn61KfDgLfkqna7iHfnOyXf89d1-Z4vVm8f5csi91yIlHushTO8UlUFNaNsU6uKG47IPJXSoURWaKiEl0BBbTgYqYBq5lglQHPkU_J46h1C_7PHmOy234dunLRMCCEp0LFvStjpy4c-xoC1HULTunCwFOxRkP0TZI-C7FnQCD2coAYR_wFDqTaS819bTWC7</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Cammerer, Sebastian</creator><creator>Aoudia, Faycal Ait</creator><creator>Dorner, Sebastian</creator><creator>Stark, Maximilian</creator><creator>Hoydis, Jakob</creator><creator>ten Brink, Stephan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2723-6171</orcidid><orcidid>https://orcid.org/0000-0002-0438-967X</orcidid><orcidid>https://orcid.org/0000-0002-1750-5895</orcidid><orcidid>https://orcid.org/0000-0002-7614-5156</orcidid><orcidid>https://orcid.org/0000-0003-4396-1082</orcidid><orcidid>https://orcid.org/0000-0003-1502-2571</orcidid></search><sort><creationdate>20200901</creationdate><title>Trainable Communication Systems: Concepts and Prototype</title><author>Cammerer, Sebastian ; Aoudia, Faycal Ait ; Dorner, Sebastian ; Stark, Maximilian ; Hoydis, Jakob ; ten Brink, Stephan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-cef4a93d7dd0f212bf7d393ee2c166ae6e2580d4c60107b309670182a2d4083e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Autoencoder</topic><topic>Channels</topic><topic>code design</topic><topic>Codes</topic><topic>Communication systems</topic><topic>Communications systems</topic><topic>Constellations</topic><topic>Decoding</topic><topic>Design modifications</topic><topic>end-to-end learning</topic><topic>Error correcting codes</topic><topic>geometric shaping</topic><topic>Iterative decoding</topic><topic>iterative demapping and decoding</topic><topic>Neural networks</topic><topic>Optical transmitters</topic><topic>Optimization</topic><topic>Random noise</topic><topic>Receivers</topic><topic>Software radio</topic><topic>software-defined radio</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cammerer, Sebastian</creatorcontrib><creatorcontrib>Aoudia, Faycal Ait</creatorcontrib><creatorcontrib>Dorner, Sebastian</creatorcontrib><creatorcontrib>Stark, Maximilian</creatorcontrib><creatorcontrib>Hoydis, Jakob</creatorcontrib><creatorcontrib>ten Brink, Stephan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cammerer, Sebastian</au><au>Aoudia, Faycal Ait</au><au>Dorner, Sebastian</au><au>Stark, Maximilian</au><au>Hoydis, Jakob</au><au>ten Brink, Stephan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trainable Communication Systems: Concepts and Prototype</atitle><jtitle>IEEE transactions on communications</jtitle><stitle>TCOMM</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>68</volume><issue>9</issue><spage>5489</spage><epage>5503</epage><pages>5489-5503</pages><issn>0090-6778</issn><eissn>1558-0857</eissn><coden>IECMBT</coden><abstract>We consider a trainable point-to-point communication system, where both transmitter and receiver are implemented as neural networks (NNs), and demonstrate that training on the bit-wise mutual information (BMI) allows seamless integration with practical bit-metric decoding (BMD) receivers, as well as joint optimization of constellation shaping and labeling. Moreover, we present a fully differentiable neural iterative demapping and decoding (IDD) structure which achieves significant gains on additive white Gaussian noise (AWGN) channels using a standard 802.11n low-density parity-check (LDPC) code. The strength of this approach is that it can be applied to arbitrary channels without any modifications. Going one step further, we show that careful code design can lead to further performance improvements. Lastly, we show the viability of the proposed system through implementation on software-defined radios (SDRs) and training of the end-to-end system on the actual wireless channel. Experimental results reveal that the proposed method enables significant gains compared to conventional techniques.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCOMM.2020.3002915</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-2723-6171</orcidid><orcidid>https://orcid.org/0000-0002-0438-967X</orcidid><orcidid>https://orcid.org/0000-0002-1750-5895</orcidid><orcidid>https://orcid.org/0000-0002-7614-5156</orcidid><orcidid>https://orcid.org/0000-0003-4396-1082</orcidid><orcidid>https://orcid.org/0000-0003-1502-2571</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0090-6778
ispartof IEEE transactions on communications, 2020-09, Vol.68 (9), p.5489-5503
issn 0090-6778
1558-0857
language eng
recordid cdi_proquest_journals_2444610139
source IEEE Electronic Library (IEL)
subjects Autoencoder
Channels
code design
Codes
Communication systems
Communications systems
Constellations
Decoding
Design modifications
end-to-end learning
Error correcting codes
geometric shaping
Iterative decoding
iterative demapping and decoding
Neural networks
Optical transmitters
Optimization
Random noise
Receivers
Software radio
software-defined radio
Training
title Trainable Communication Systems: Concepts and Prototype
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T18%3A56%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trainable%20Communication%20Systems:%20Concepts%20and%20Prototype&rft.jtitle=IEEE%20transactions%20on%20communications&rft.au=Cammerer,%20Sebastian&rft.date=2020-09-01&rft.volume=68&rft.issue=9&rft.spage=5489&rft.epage=5503&rft.pages=5489-5503&rft.issn=0090-6778&rft.eissn=1558-0857&rft.coden=IECMBT&rft_id=info:doi/10.1109/TCOMM.2020.3002915&rft_dat=%3Cproquest_RIE%3E2444610139%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2444610139&rft_id=info:pmid/&rft_ieee_id=9118963&rfr_iscdi=true