A Study on Ionization Damage Effects of Anode-Short MOS-Controlled Thyristor
The mymargin metal-oxide-semiconductor mymargin (MOS)-controlled thyristor (MCT) has been characterized by MOS gating, high current rise rate, and high blocking capabilities. The anode-short MCT (AS-MCT) is distinguished from the conventional MCT by an anode-short structure, which forms an extractin...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on nuclear science 2020-09, Vol.67 (9), p.2062-2072 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2072 |
---|---|
container_issue | 9 |
container_start_page | 2062 |
container_title | IEEE transactions on nuclear science |
container_volume | 67 |
creator | Li, Lei Li, Ze-hong Chen, Xiao-Chi Wu, Yu-zhou Zhang, Jin-ping Ren, Min Zhang, Bo Pang, Yuan-long Wu, Xiao-Li |
description | The mymargin metal-oxide-semiconductor mymargin (MOS)-controlled thyristor (MCT) has been characterized by MOS gating, high current rise rate, and high blocking capabilities. The anode-short MCT (AS-MCT) is distinguished from the conventional MCT by an anode-short structure, which forms an extracting path for the electron current at the gate ground and develops a normally-OFF characteristic. As a composite structure made of MOS and bipolar junction transistors, the AS-MCT is susceptible to ionization damage. The total ionization dose (TID) effects on the XND1 AS-MCT (breakdown voltage 1800 V grade) with a dose up to 9160 Gy(SiO 2 ) are reported. The experimental results of transfer, forward conductive, and forward blocking characteristics are presented. A novel phenomenon, denoted as "self-trigger", is identified for the AS-MCT following \gamma -ray exposures, which can account for the significant increase in anode current in the AS-MCT. This article proposes the mechanism behind the characteristic degradation from the TID damage in the AS-MCT, from a device physics perspective. |
doi_str_mv | 10.1109/TNS.2020.3012766 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2444610135</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9152040</ieee_id><sourcerecordid>2444610135</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-34b362bab00b619eac4ade2430daeecdfe34ce5092c64d41a8bd8655e86459963</originalsourceid><addsrcrecordid>eNo9kE1PAjEQhhujiYjeTbw08bw4_WR7JIhKgnJYPG-621lZAltsywF_vUswnuad5HlnkoeQewYjxsA8rT6KEQcOIwGMj7W-IAOmVJ4xNc4vyQCA5ZmRxlyTmxg3_SoVqAFZTGiRDu5IfUfnvmt_bGr7-Gx39gvprGmwTpH6hk467zAr1j4k-r4ssqnvUvDbLTq6Wh9DG5MPt-SqsduId39zSD5fZqvpW7ZYvs6nk0VWCzVOmZCV0LyyFUClmUFbS-uQSwHOItauQSFrVGB4raWTzOaVy7VSmGupjNFiSB7Pd_fBfx8wpnLjD6HrX5ZcSqkZMKF6Cs5UHXyMAZtyH9qdDceSQXlyVvbOypOz8s9ZX3k4V1pE_McNUxwkiF_N12b7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2444610135</pqid></control><display><type>article</type><title>A Study on Ionization Damage Effects of Anode-Short MOS-Controlled Thyristor</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Lei ; Li, Ze-hong ; Chen, Xiao-Chi ; Wu, Yu-zhou ; Zhang, Jin-ping ; Ren, Min ; Zhang, Bo ; Pang, Yuan-long ; Wu, Xiao-Li</creator><creatorcontrib>Li, Lei ; Li, Ze-hong ; Chen, Xiao-Chi ; Wu, Yu-zhou ; Zhang, Jin-ping ; Ren, Min ; Zhang, Bo ; Pang, Yuan-long ; Wu, Xiao-Li</creatorcontrib><description>The mymargin metal-oxide-semiconductor mymargin (MOS)-controlled thyristor (MCT) has been characterized by MOS gating, high current rise rate, and high blocking capabilities. The anode-short MCT (AS-MCT) is distinguished from the conventional MCT by an anode-short structure, which forms an extracting path for the electron current at the gate ground and develops a normally-OFF characteristic. As a composite structure made of MOS and bipolar junction transistors, the AS-MCT is susceptible to ionization damage. The total ionization dose (TID) effects on the XND1 AS-MCT (breakdown voltage 1800 V grade) with a dose up to 9160 Gy(SiO 2 ) are reported. The experimental results of transfer, forward conductive, and forward blocking characteristics are presented. A novel phenomenon, denoted as "self-trigger", is identified for the AS-MCT following <inline-formula> <tex-math notation="LaTeX">\gamma </tex-math></inline-formula>-ray exposures, which can account for the significant increase in anode current in the AS-MCT. This article proposes the mechanism behind the characteristic degradation from the TID damage in the AS-MCT, from a device physics perspective.</description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/TNS.2020.3012766</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Anode effect ; Anode-short metal–oxide–semiconductor (MOS)-controlled thyristor ; Anodes ; bipolar devices ; Bipolar transistors ; Cathodes ; Charge carrier lifetime ; Composite structures ; Damage ; Gating ; Ionization ; Junction transistors ; Logic gates ; MOS ; Semiconductor devices ; Silicon ; Silicon dioxide ; Thyristors ; total ionization dose (TID) damage</subject><ispartof>IEEE transactions on nuclear science, 2020-09, Vol.67 (9), p.2062-2072</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-34b362bab00b619eac4ade2430daeecdfe34ce5092c64d41a8bd8655e86459963</citedby><cites>FETCH-LOGICAL-c357t-34b362bab00b619eac4ade2430daeecdfe34ce5092c64d41a8bd8655e86459963</cites><orcidid>0000-0002-3981-8614 ; 0000-0001-9223-643X ; 0000-0003-1288-1549 ; 0000-0002-6762-2838 ; 0000-0002-8119-5000</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9152040$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9152040$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Lei</creatorcontrib><creatorcontrib>Li, Ze-hong</creatorcontrib><creatorcontrib>Chen, Xiao-Chi</creatorcontrib><creatorcontrib>Wu, Yu-zhou</creatorcontrib><creatorcontrib>Zhang, Jin-ping</creatorcontrib><creatorcontrib>Ren, Min</creatorcontrib><creatorcontrib>Zhang, Bo</creatorcontrib><creatorcontrib>Pang, Yuan-long</creatorcontrib><creatorcontrib>Wu, Xiao-Li</creatorcontrib><title>A Study on Ionization Damage Effects of Anode-Short MOS-Controlled Thyristor</title><title>IEEE transactions on nuclear science</title><addtitle>TNS</addtitle><description>The mymargin metal-oxide-semiconductor mymargin (MOS)-controlled thyristor (MCT) has been characterized by MOS gating, high current rise rate, and high blocking capabilities. The anode-short MCT (AS-MCT) is distinguished from the conventional MCT by an anode-short structure, which forms an extracting path for the electron current at the gate ground and develops a normally-OFF characteristic. As a composite structure made of MOS and bipolar junction transistors, the AS-MCT is susceptible to ionization damage. The total ionization dose (TID) effects on the XND1 AS-MCT (breakdown voltage 1800 V grade) with a dose up to 9160 Gy(SiO 2 ) are reported. The experimental results of transfer, forward conductive, and forward blocking characteristics are presented. A novel phenomenon, denoted as "self-trigger", is identified for the AS-MCT following <inline-formula> <tex-math notation="LaTeX">\gamma </tex-math></inline-formula>-ray exposures, which can account for the significant increase in anode current in the AS-MCT. This article proposes the mechanism behind the characteristic degradation from the TID damage in the AS-MCT, from a device physics perspective.</description><subject>Anode effect</subject><subject>Anode-short metal–oxide–semiconductor (MOS)-controlled thyristor</subject><subject>Anodes</subject><subject>bipolar devices</subject><subject>Bipolar transistors</subject><subject>Cathodes</subject><subject>Charge carrier lifetime</subject><subject>Composite structures</subject><subject>Damage</subject><subject>Gating</subject><subject>Ionization</subject><subject>Junction transistors</subject><subject>Logic gates</subject><subject>MOS</subject><subject>Semiconductor devices</subject><subject>Silicon</subject><subject>Silicon dioxide</subject><subject>Thyristors</subject><subject>total ionization dose (TID) damage</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PAjEQhhujiYjeTbw08bw4_WR7JIhKgnJYPG-621lZAltsywF_vUswnuad5HlnkoeQewYjxsA8rT6KEQcOIwGMj7W-IAOmVJ4xNc4vyQCA5ZmRxlyTmxg3_SoVqAFZTGiRDu5IfUfnvmt_bGr7-Gx39gvprGmwTpH6hk467zAr1j4k-r4ssqnvUvDbLTq6Wh9DG5MPt-SqsduId39zSD5fZqvpW7ZYvs6nk0VWCzVOmZCV0LyyFUClmUFbS-uQSwHOItauQSFrVGB4raWTzOaVy7VSmGupjNFiSB7Pd_fBfx8wpnLjD6HrX5ZcSqkZMKF6Cs5UHXyMAZtyH9qdDceSQXlyVvbOypOz8s9ZX3k4V1pE_McNUxwkiF_N12b7</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Li, Lei</creator><creator>Li, Ze-hong</creator><creator>Chen, Xiao-Chi</creator><creator>Wu, Yu-zhou</creator><creator>Zhang, Jin-ping</creator><creator>Ren, Min</creator><creator>Zhang, Bo</creator><creator>Pang, Yuan-long</creator><creator>Wu, Xiao-Li</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-3981-8614</orcidid><orcidid>https://orcid.org/0000-0001-9223-643X</orcidid><orcidid>https://orcid.org/0000-0003-1288-1549</orcidid><orcidid>https://orcid.org/0000-0002-6762-2838</orcidid><orcidid>https://orcid.org/0000-0002-8119-5000</orcidid></search><sort><creationdate>20200901</creationdate><title>A Study on Ionization Damage Effects of Anode-Short MOS-Controlled Thyristor</title><author>Li, Lei ; Li, Ze-hong ; Chen, Xiao-Chi ; Wu, Yu-zhou ; Zhang, Jin-ping ; Ren, Min ; Zhang, Bo ; Pang, Yuan-long ; Wu, Xiao-Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-34b362bab00b619eac4ade2430daeecdfe34ce5092c64d41a8bd8655e86459963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anode effect</topic><topic>Anode-short metal–oxide–semiconductor (MOS)-controlled thyristor</topic><topic>Anodes</topic><topic>bipolar devices</topic><topic>Bipolar transistors</topic><topic>Cathodes</topic><topic>Charge carrier lifetime</topic><topic>Composite structures</topic><topic>Damage</topic><topic>Gating</topic><topic>Ionization</topic><topic>Junction transistors</topic><topic>Logic gates</topic><topic>MOS</topic><topic>Semiconductor devices</topic><topic>Silicon</topic><topic>Silicon dioxide</topic><topic>Thyristors</topic><topic>total ionization dose (TID) damage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Lei</creatorcontrib><creatorcontrib>Li, Ze-hong</creatorcontrib><creatorcontrib>Chen, Xiao-Chi</creatorcontrib><creatorcontrib>Wu, Yu-zhou</creatorcontrib><creatorcontrib>Zhang, Jin-ping</creatorcontrib><creatorcontrib>Ren, Min</creatorcontrib><creatorcontrib>Zhang, Bo</creatorcontrib><creatorcontrib>Pang, Yuan-long</creatorcontrib><creatorcontrib>Wu, Xiao-Li</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Lei</au><au>Li, Ze-hong</au><au>Chen, Xiao-Chi</au><au>Wu, Yu-zhou</au><au>Zhang, Jin-ping</au><au>Ren, Min</au><au>Zhang, Bo</au><au>Pang, Yuan-long</au><au>Wu, Xiao-Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Study on Ionization Damage Effects of Anode-Short MOS-Controlled Thyristor</atitle><jtitle>IEEE transactions on nuclear science</jtitle><stitle>TNS</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>67</volume><issue>9</issue><spage>2062</spage><epage>2072</epage><pages>2062-2072</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract>The mymargin metal-oxide-semiconductor mymargin (MOS)-controlled thyristor (MCT) has been characterized by MOS gating, high current rise rate, and high blocking capabilities. The anode-short MCT (AS-MCT) is distinguished from the conventional MCT by an anode-short structure, which forms an extracting path for the electron current at the gate ground and develops a normally-OFF characteristic. As a composite structure made of MOS and bipolar junction transistors, the AS-MCT is susceptible to ionization damage. The total ionization dose (TID) effects on the XND1 AS-MCT (breakdown voltage 1800 V grade) with a dose up to 9160 Gy(SiO 2 ) are reported. The experimental results of transfer, forward conductive, and forward blocking characteristics are presented. A novel phenomenon, denoted as "self-trigger", is identified for the AS-MCT following <inline-formula> <tex-math notation="LaTeX">\gamma </tex-math></inline-formula>-ray exposures, which can account for the significant increase in anode current in the AS-MCT. This article proposes the mechanism behind the characteristic degradation from the TID damage in the AS-MCT, from a device physics perspective.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNS.2020.3012766</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3981-8614</orcidid><orcidid>https://orcid.org/0000-0001-9223-643X</orcidid><orcidid>https://orcid.org/0000-0003-1288-1549</orcidid><orcidid>https://orcid.org/0000-0002-6762-2838</orcidid><orcidid>https://orcid.org/0000-0002-8119-5000</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9499 |
ispartof | IEEE transactions on nuclear science, 2020-09, Vol.67 (9), p.2062-2072 |
issn | 0018-9499 1558-1578 |
language | eng |
recordid | cdi_proquest_journals_2444610135 |
source | IEEE Electronic Library (IEL) |
subjects | Anode effect Anode-short metal–oxide–semiconductor (MOS)-controlled thyristor Anodes bipolar devices Bipolar transistors Cathodes Charge carrier lifetime Composite structures Damage Gating Ionization Junction transistors Logic gates MOS Semiconductor devices Silicon Silicon dioxide Thyristors total ionization dose (TID) damage |
title | A Study on Ionization Damage Effects of Anode-Short MOS-Controlled Thyristor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T07%3A05%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Study%20on%20Ionization%20Damage%20Effects%20of%20Anode-Short%20MOS-Controlled%20Thyristor&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=Li,%20Lei&rft.date=2020-09-01&rft.volume=67&rft.issue=9&rft.spage=2062&rft.epage=2072&rft.pages=2062-2072&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/TNS.2020.3012766&rft_dat=%3Cproquest_RIE%3E2444610135%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2444610135&rft_id=info:pmid/&rft_ieee_id=9152040&rfr_iscdi=true |