Nuclear Heating Measurements by Gamma and Neutron Thermometers

A gamma thermometer (GT) suitable for very high gamma heating levels (up to 20 W/g) has been designed and modeled by means of detailed finite element calculations. Based on a sensitivity analysis, the predicted accuracy of this GT is better than 5%. Experimental verification of the time constants ha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on nuclear science 2020-09, Vol.67 (9), p.2073-2080
Hauptverfasser: Van Nieuwenhove, R., Vermeeren, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2080
container_issue 9
container_start_page 2073
container_title IEEE transactions on nuclear science
container_volume 67
creator Van Nieuwenhove, R.
Vermeeren, L.
description A gamma thermometer (GT) suitable for very high gamma heating levels (up to 20 W/g) has been designed and modeled by means of detailed finite element calculations. Based on a sensitivity analysis, the predicted accuracy of this GT is better than 5%. Experimental verification of the time constants has been performed, showing excellent agreement. A novel miniaturized GT in which a single thermocouple is used as the gamma absorption element, allowing a reduction of the sensor diameter down to 3 mm, is proposed. The sensitivities of the GTs with stainless steel, W, Mo, and Rh as the heated materials have been modeled by finite element calculations. It is found that both the Mo- and the Rh-based sensors have a very linear response up to a nuclear heating of 20 W/g. Monte Carlo calculations [by Monte Carlo N-Particle (MCNP)] have been performed to assess the relative contribution of neutrons to the nuclear heating in a GT. Calculations have been performed for GTs with an inner body made of various materials, such as stainless steel, tungsten, molybdenum, and rhodium. By using GTs made of different materials, it will be possible to deduce the nuclear heating rates in these materials and also to separate out the neutron and gamma heating contributions. The Monte Carlo calculations show that nuclear heating of rhodium is mainly due to neutrons, converting the rhodium GT effectively in a neutron thermometer.
doi_str_mv 10.1109/TNS.2020.2984782
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2444610036</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9052652</ieee_id><sourcerecordid>2444610036</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-16fb9e316595cabcdc991a87d03d1af74c8d8e9439f62a1de57bf518a6c8d52a3</originalsourceid><addsrcrecordid>eNqNkM9LwzAUgIMoOKd3wUvBo3S-_GqTiyBFN0HnwXkuafqqHWs7kxbZf29Gh149hUe-7z34CLmkMKMU9O1q-TZjwGDGtBKpYkdkQqVUMZWpOiYTAKpiLbQ-JWfer8MoJMgJuVsOdoPGRQs0fd1-RC9o_OCwwbb3UbGL5qZpTGTaMlri0LuujVaf6JquwR6dPycnldl4vDi8U_L--LDKFvHz6_wpu3-OLee8j2lSFRo5TaSW1hS2tFpTo9ISeElNlQqrSoVacF0lzNASZVpUkiqThA_JDJ-S63Hv1nVfA_o-X3eDa8PJnAkhEgrAk0DBSFnXee-wyreubozb5RTyfaU8VMr3lfJDpaDcjMo3Fl3lbY2txV8NAGRKU8FS2BcLtPo_ndV9SNq1WTe0fVCvRrVG_FM0SJZIxn8AsMGDhg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2444610036</pqid></control><display><type>article</type><title>Nuclear Heating Measurements by Gamma and Neutron Thermometers</title><source>IEEE Electronic Library (IEL)</source><creator>Van Nieuwenhove, R. ; Vermeeren, L.</creator><creatorcontrib>Van Nieuwenhove, R. ; Vermeeren, L.</creatorcontrib><description>A gamma thermometer (GT) suitable for very high gamma heating levels (up to 20 W/g) has been designed and modeled by means of detailed finite element calculations. Based on a sensitivity analysis, the predicted accuracy of this GT is better than 5%. Experimental verification of the time constants has been performed, showing excellent agreement. A novel miniaturized GT in which a single thermocouple is used as the gamma absorption element, allowing a reduction of the sensor diameter down to 3 mm, is proposed. The sensitivities of the GTs with stainless steel, W, Mo, and Rh as the heated materials have been modeled by finite element calculations. It is found that both the Mo- and the Rh-based sensors have a very linear response up to a nuclear heating of 20 W/g. Monte Carlo calculations [by Monte Carlo N-Particle (MCNP)] have been performed to assess the relative contribution of neutrons to the nuclear heating in a GT. Calculations have been performed for GTs with an inner body made of various materials, such as stainless steel, tungsten, molybdenum, and rhodium. By using GTs made of different materials, it will be possible to deduce the nuclear heating rates in these materials and also to separate out the neutron and gamma heating contributions. The Monte Carlo calculations show that nuclear heating of rhodium is mainly due to neutrons, converting the rhodium GT effectively in a neutron thermometer.</description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/TNS.2020.2984782</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>PISCATAWAY: IEEE</publisher><subject>Computer simulation ; Conductivity ; Diameters ; Engineering ; Engineering, Electrical &amp; Electronic ; Finite element analysis ; Finite element method ; Gamma-ray detectors ; Heating ; Heating systems ; Molybdenum ; Neutrons ; nuclear measurements ; Nuclear Science &amp; Technology ; Rhodium ; Science &amp; Technology ; Sensitivity ; Sensitivity analysis ; Stainless steel ; Stainless steels ; Technology ; Thermal conductivity ; Thermocouples ; Thermometers ; Tungsten</subject><ispartof>IEEE transactions on nuclear science, 2020-09, Vol.67 (9), p.2073-2080</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>2</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000571742700014</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c333t-16fb9e316595cabcdc991a87d03d1af74c8d8e9439f62a1de57bf518a6c8d52a3</citedby><cites>FETCH-LOGICAL-c333t-16fb9e316595cabcdc991a87d03d1af74c8d8e9439f62a1de57bf518a6c8d52a3</cites><orcidid>0000-0002-9088-8618 ; 0000-0003-1265-8718</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9052652$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27933,27934,28257,54767</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9052652$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Van Nieuwenhove, R.</creatorcontrib><creatorcontrib>Vermeeren, L.</creatorcontrib><title>Nuclear Heating Measurements by Gamma and Neutron Thermometers</title><title>IEEE transactions on nuclear science</title><addtitle>TNS</addtitle><addtitle>IEEE T NUCL SCI</addtitle><description>A gamma thermometer (GT) suitable for very high gamma heating levels (up to 20 W/g) has been designed and modeled by means of detailed finite element calculations. Based on a sensitivity analysis, the predicted accuracy of this GT is better than 5%. Experimental verification of the time constants has been performed, showing excellent agreement. A novel miniaturized GT in which a single thermocouple is used as the gamma absorption element, allowing a reduction of the sensor diameter down to 3 mm, is proposed. The sensitivities of the GTs with stainless steel, W, Mo, and Rh as the heated materials have been modeled by finite element calculations. It is found that both the Mo- and the Rh-based sensors have a very linear response up to a nuclear heating of 20 W/g. Monte Carlo calculations [by Monte Carlo N-Particle (MCNP)] have been performed to assess the relative contribution of neutrons to the nuclear heating in a GT. Calculations have been performed for GTs with an inner body made of various materials, such as stainless steel, tungsten, molybdenum, and rhodium. By using GTs made of different materials, it will be possible to deduce the nuclear heating rates in these materials and also to separate out the neutron and gamma heating contributions. The Monte Carlo calculations show that nuclear heating of rhodium is mainly due to neutrons, converting the rhodium GT effectively in a neutron thermometer.</description><subject>Computer simulation</subject><subject>Conductivity</subject><subject>Diameters</subject><subject>Engineering</subject><subject>Engineering, Electrical &amp; Electronic</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Gamma-ray detectors</subject><subject>Heating</subject><subject>Heating systems</subject><subject>Molybdenum</subject><subject>Neutrons</subject><subject>nuclear measurements</subject><subject>Nuclear Science &amp; Technology</subject><subject>Rhodium</subject><subject>Science &amp; Technology</subject><subject>Sensitivity</subject><subject>Sensitivity analysis</subject><subject>Stainless steel</subject><subject>Stainless steels</subject><subject>Technology</subject><subject>Thermal conductivity</subject><subject>Thermocouples</subject><subject>Thermometers</subject><subject>Tungsten</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>AOWDO</sourceid><recordid>eNqNkM9LwzAUgIMoOKd3wUvBo3S-_GqTiyBFN0HnwXkuafqqHWs7kxbZf29Gh149hUe-7z34CLmkMKMU9O1q-TZjwGDGtBKpYkdkQqVUMZWpOiYTAKpiLbQ-JWfer8MoJMgJuVsOdoPGRQs0fd1-RC9o_OCwwbb3UbGL5qZpTGTaMlri0LuujVaf6JquwR6dPycnldl4vDi8U_L--LDKFvHz6_wpu3-OLee8j2lSFRo5TaSW1hS2tFpTo9ISeElNlQqrSoVacF0lzNASZVpUkiqThA_JDJ-S63Hv1nVfA_o-X3eDa8PJnAkhEgrAk0DBSFnXee-wyreubozb5RTyfaU8VMr3lfJDpaDcjMo3Fl3lbY2txV8NAGRKU8FS2BcLtPo_ndV9SNq1WTe0fVCvRrVG_FM0SJZIxn8AsMGDhg</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Van Nieuwenhove, R.</creator><creator>Vermeeren, L.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-9088-8618</orcidid><orcidid>https://orcid.org/0000-0003-1265-8718</orcidid></search><sort><creationdate>20200901</creationdate><title>Nuclear Heating Measurements by Gamma and Neutron Thermometers</title><author>Van Nieuwenhove, R. ; Vermeeren, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-16fb9e316595cabcdc991a87d03d1af74c8d8e9439f62a1de57bf518a6c8d52a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computer simulation</topic><topic>Conductivity</topic><topic>Diameters</topic><topic>Engineering</topic><topic>Engineering, Electrical &amp; Electronic</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Gamma-ray detectors</topic><topic>Heating</topic><topic>Heating systems</topic><topic>Molybdenum</topic><topic>Neutrons</topic><topic>nuclear measurements</topic><topic>Nuclear Science &amp; Technology</topic><topic>Rhodium</topic><topic>Science &amp; Technology</topic><topic>Sensitivity</topic><topic>Sensitivity analysis</topic><topic>Stainless steel</topic><topic>Stainless steels</topic><topic>Technology</topic><topic>Thermal conductivity</topic><topic>Thermocouples</topic><topic>Thermometers</topic><topic>Tungsten</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Van Nieuwenhove, R.</creatorcontrib><creatorcontrib>Vermeeren, L.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Van Nieuwenhove, R.</au><au>Vermeeren, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nuclear Heating Measurements by Gamma and Neutron Thermometers</atitle><jtitle>IEEE transactions on nuclear science</jtitle><stitle>TNS</stitle><stitle>IEEE T NUCL SCI</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>67</volume><issue>9</issue><spage>2073</spage><epage>2080</epage><pages>2073-2080</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract>A gamma thermometer (GT) suitable for very high gamma heating levels (up to 20 W/g) has been designed and modeled by means of detailed finite element calculations. Based on a sensitivity analysis, the predicted accuracy of this GT is better than 5%. Experimental verification of the time constants has been performed, showing excellent agreement. A novel miniaturized GT in which a single thermocouple is used as the gamma absorption element, allowing a reduction of the sensor diameter down to 3 mm, is proposed. The sensitivities of the GTs with stainless steel, W, Mo, and Rh as the heated materials have been modeled by finite element calculations. It is found that both the Mo- and the Rh-based sensors have a very linear response up to a nuclear heating of 20 W/g. Monte Carlo calculations [by Monte Carlo N-Particle (MCNP)] have been performed to assess the relative contribution of neutrons to the nuclear heating in a GT. Calculations have been performed for GTs with an inner body made of various materials, such as stainless steel, tungsten, molybdenum, and rhodium. By using GTs made of different materials, it will be possible to deduce the nuclear heating rates in these materials and also to separate out the neutron and gamma heating contributions. The Monte Carlo calculations show that nuclear heating of rhodium is mainly due to neutrons, converting the rhodium GT effectively in a neutron thermometer.</abstract><cop>PISCATAWAY</cop><pub>IEEE</pub><doi>10.1109/TNS.2020.2984782</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9088-8618</orcidid><orcidid>https://orcid.org/0000-0003-1265-8718</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9499
ispartof IEEE transactions on nuclear science, 2020-09, Vol.67 (9), p.2073-2080
issn 0018-9499
1558-1578
language eng
recordid cdi_proquest_journals_2444610036
source IEEE Electronic Library (IEL)
subjects Computer simulation
Conductivity
Diameters
Engineering
Engineering, Electrical & Electronic
Finite element analysis
Finite element method
Gamma-ray detectors
Heating
Heating systems
Molybdenum
Neutrons
nuclear measurements
Nuclear Science & Technology
Rhodium
Science & Technology
Sensitivity
Sensitivity analysis
Stainless steel
Stainless steels
Technology
Thermal conductivity
Thermocouples
Thermometers
Tungsten
title Nuclear Heating Measurements by Gamma and Neutron Thermometers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T05%3A29%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nuclear%20Heating%20Measurements%20by%20Gamma%20and%20Neutron%20Thermometers&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=Van%20Nieuwenhove,%20R.&rft.date=2020-09-01&rft.volume=67&rft.issue=9&rft.spage=2073&rft.epage=2080&rft.pages=2073-2080&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/TNS.2020.2984782&rft_dat=%3Cproquest_RIE%3E2444610036%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2444610036&rft_id=info:pmid/&rft_ieee_id=9052652&rfr_iscdi=true