The IntCal20 Approach to Radiocarbon Calibration Curve Construction: A New Methodology Using Bayesian Splines and Errors-in-Variables

To create a reliable radiocarbon calibration curve, one needs not only high-quality data but also a robust statistical methodology. The unique aspects of much of the calibration data provide considerable modeling challenges and require a made-to-measure approach to curve construction that accurately...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Radiocarbon 2020-08, Vol.62 (4), p.821-863
Hauptverfasser: Heaton, Timothy J, Blaauw, Maarten, Blackwell, Paul G, Bronk Ramsey, Christopher, Reimer, Paula J, Scott, E Marian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 863
container_issue 4
container_start_page 821
container_title Radiocarbon
container_volume 62
creator Heaton, Timothy J
Blaauw, Maarten
Blackwell, Paul G
Bronk Ramsey, Christopher
Reimer, Paula J
Scott, E Marian
description To create a reliable radiocarbon calibration curve, one needs not only high-quality data but also a robust statistical methodology. The unique aspects of much of the calibration data provide considerable modeling challenges and require a made-to-measure approach to curve construction that accurately represents and adapts to these individualities, bringing the data together into a single curve. For IntCal20, the statistical methodology has undergone a complete redesign, from the random walk used in IntCal04, IntCal09 and IntCal13, to an approach based upon Bayesian splines with errors-in-variables. The new spline approach is still fitted using Markov Chain Monte Carlo (MCMC) but offers considerable advantages over the previous random walk, including faster and more reliable curve construction together with greatly increased flexibility and detail in modeling choices. This paper describes the new methodology together with the tailored modifications required to integrate the various datasets. For an end-user, the key changes include the recognition and estimation of potential over-dispersion in 14C determinations, and its consequences on calibration which we address through the provision of predictive intervals on the curve; improvements to the modeling of rapid 14C excursions and reservoir ages/dead carbon fractions; and modifications made to, hopefully, ensure better mixing of the MCMC which consequently increase confidence in the estimated curve.
doi_str_mv 10.1017/RDC.2020.46
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2444554533</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_RDC_2020_46</cupid><sourcerecordid>2444554533</sourcerecordid><originalsourceid>FETCH-LOGICAL-a425t-e51f566a2049879491c142b5548679a9dd02aef4a063053a22501fd1dc76ed4b3</originalsourceid><addsrcrecordid>eNptkMtOwzAQRS0EEqWw4gcssUQptmPnwa6EApV4SKVlG01ip3WV2sVOQP0A_ptErcSG1Yxmju5oDkKXlIwoofHN7D4bMcLIiEdHaEBTLgIRC3GMBoSEYZAwxk7RmfdrQhiNkniAfuYrhaemyaBmBI-3W2ehXOHG4hlIbUtwhTW42-rCQaP7vnVfCmfW-Ma1ZT-6xWP8qr7xi2pWVtraLnd44bVZ4jvYKa_B4PdtrY3yGIzEE-es84E2wQc4DUWt_Dk6qaD26uJQh2jxMJlnT8Hz2-M0Gz8HwJloAiVoJaIIGOFpEqc8pSXlrBCCJ1GcQiolYaAqDiQKiQiBMUFoJaks40hJXoRDdLXP7d78bJVv8rVtnelO5oxz3gWJMOyo6z1VOuu9U1W-dXoDbpdTkvee885z3nvOedTRwYGGTeG0XKq_0P_4X-bXfi4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2444554533</pqid></control><display><type>article</type><title>The IntCal20 Approach to Radiocarbon Calibration Curve Construction: A New Methodology Using Bayesian Splines and Errors-in-Variables</title><source>Cambridge Journals - Connect here FIRST to enable access</source><source>Free Full-Text Journals in Chemistry</source><creator>Heaton, Timothy J ; Blaauw, Maarten ; Blackwell, Paul G ; Bronk Ramsey, Christopher ; Reimer, Paula J ; Scott, E Marian</creator><creatorcontrib>Heaton, Timothy J ; Blaauw, Maarten ; Blackwell, Paul G ; Bronk Ramsey, Christopher ; Reimer, Paula J ; Scott, E Marian</creatorcontrib><description>To create a reliable radiocarbon calibration curve, one needs not only high-quality data but also a robust statistical methodology. The unique aspects of much of the calibration data provide considerable modeling challenges and require a made-to-measure approach to curve construction that accurately represents and adapts to these individualities, bringing the data together into a single curve. For IntCal20, the statistical methodology has undergone a complete redesign, from the random walk used in IntCal04, IntCal09 and IntCal13, to an approach based upon Bayesian splines with errors-in-variables. The new spline approach is still fitted using Markov Chain Monte Carlo (MCMC) but offers considerable advantages over the previous random walk, including faster and more reliable curve construction together with greatly increased flexibility and detail in modeling choices. This paper describes the new methodology together with the tailored modifications required to integrate the various datasets. For an end-user, the key changes include the recognition and estimation of potential over-dispersion in 14C determinations, and its consequences on calibration which we address through the provision of predictive intervals on the curve; improvements to the modeling of rapid 14C excursions and reservoir ages/dead carbon fractions; and modifications made to, hopefully, ensure better mixing of the MCMC which consequently increase confidence in the estimated curve.</description><identifier>ISSN: 0033-8222</identifier><identifier>EISSN: 1945-5755</identifier><identifier>DOI: 10.1017/RDC.2020.46</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Bayesian analysis ; Calendars ; Calibration ; Calibration Curves and Construction ; Carbon 14 ; Computer simulation ; Conference Paper ; Confidence ; Construction ; Markov chains ; Methodology ; Modelling ; Random walk ; Redesign ; Spline functions</subject><ispartof>Radiocarbon, 2020-08, Vol.62 (4), p.821-863</ispartof><rights>2020 by the Arizona Board of Regents on behalf of the University of Arizona</rights><rights>2020 This article is published under (https://creativecommons.org/licenses/by/3.0/) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a425t-e51f566a2049879491c142b5548679a9dd02aef4a063053a22501fd1dc76ed4b3</citedby><cites>FETCH-LOGICAL-a425t-e51f566a2049879491c142b5548679a9dd02aef4a063053a22501fd1dc76ed4b3</cites><orcidid>0000-0002-5680-1515 ; 0000-0002-9994-142X ; 0000-0001-9238-2146 ; 0000-0002-3709-0623 ; 0000-0002-3141-4914 ; 0000-0002-8641-9309</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0033822220000466/type/journal_article$$EHTML$$P50$$Gcambridge$$Hfree_for_read</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>Heaton, Timothy J</creatorcontrib><creatorcontrib>Blaauw, Maarten</creatorcontrib><creatorcontrib>Blackwell, Paul G</creatorcontrib><creatorcontrib>Bronk Ramsey, Christopher</creatorcontrib><creatorcontrib>Reimer, Paula J</creatorcontrib><creatorcontrib>Scott, E Marian</creatorcontrib><title>The IntCal20 Approach to Radiocarbon Calibration Curve Construction: A New Methodology Using Bayesian Splines and Errors-in-Variables</title><title>Radiocarbon</title><addtitle>Radiocarbon</addtitle><description>To create a reliable radiocarbon calibration curve, one needs not only high-quality data but also a robust statistical methodology. The unique aspects of much of the calibration data provide considerable modeling challenges and require a made-to-measure approach to curve construction that accurately represents and adapts to these individualities, bringing the data together into a single curve. For IntCal20, the statistical methodology has undergone a complete redesign, from the random walk used in IntCal04, IntCal09 and IntCal13, to an approach based upon Bayesian splines with errors-in-variables. The new spline approach is still fitted using Markov Chain Monte Carlo (MCMC) but offers considerable advantages over the previous random walk, including faster and more reliable curve construction together with greatly increased flexibility and detail in modeling choices. This paper describes the new methodology together with the tailored modifications required to integrate the various datasets. For an end-user, the key changes include the recognition and estimation of potential over-dispersion in 14C determinations, and its consequences on calibration which we address through the provision of predictive intervals on the curve; improvements to the modeling of rapid 14C excursions and reservoir ages/dead carbon fractions; and modifications made to, hopefully, ensure better mixing of the MCMC which consequently increase confidence in the estimated curve.</description><subject>Bayesian analysis</subject><subject>Calendars</subject><subject>Calibration</subject><subject>Calibration Curves and Construction</subject><subject>Carbon 14</subject><subject>Computer simulation</subject><subject>Conference Paper</subject><subject>Confidence</subject><subject>Construction</subject><subject>Markov chains</subject><subject>Methodology</subject><subject>Modelling</subject><subject>Random walk</subject><subject>Redesign</subject><subject>Spline functions</subject><issn>0033-8222</issn><issn>1945-5755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>IKXGN</sourceid><sourceid>BENPR</sourceid><recordid>eNptkMtOwzAQRS0EEqWw4gcssUQptmPnwa6EApV4SKVlG01ip3WV2sVOQP0A_ptErcSG1Yxmju5oDkKXlIwoofHN7D4bMcLIiEdHaEBTLgIRC3GMBoSEYZAwxk7RmfdrQhiNkniAfuYrhaemyaBmBI-3W2ehXOHG4hlIbUtwhTW42-rCQaP7vnVfCmfW-Ma1ZT-6xWP8qr7xi2pWVtraLnd44bVZ4jvYKa_B4PdtrY3yGIzEE-es84E2wQc4DUWt_Dk6qaD26uJQh2jxMJlnT8Hz2-M0Gz8HwJloAiVoJaIIGOFpEqc8pSXlrBCCJ1GcQiolYaAqDiQKiQiBMUFoJaks40hJXoRDdLXP7d78bJVv8rVtnelO5oxz3gWJMOyo6z1VOuu9U1W-dXoDbpdTkvee885z3nvOedTRwYGGTeG0XKq_0P_4X-bXfi4</recordid><startdate>202008</startdate><enddate>202008</enddate><creator>Heaton, Timothy J</creator><creator>Blaauw, Maarten</creator><creator>Blackwell, Paul G</creator><creator>Bronk Ramsey, Christopher</creator><creator>Reimer, Paula J</creator><creator>Scott, E Marian</creator><general>Cambridge University Press</general><scope>IKXGN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-5680-1515</orcidid><orcidid>https://orcid.org/0000-0002-9994-142X</orcidid><orcidid>https://orcid.org/0000-0001-9238-2146</orcidid><orcidid>https://orcid.org/0000-0002-3709-0623</orcidid><orcidid>https://orcid.org/0000-0002-3141-4914</orcidid><orcidid>https://orcid.org/0000-0002-8641-9309</orcidid></search><sort><creationdate>202008</creationdate><title>The IntCal20 Approach to Radiocarbon Calibration Curve Construction: A New Methodology Using Bayesian Splines and Errors-in-Variables</title><author>Heaton, Timothy J ; Blaauw, Maarten ; Blackwell, Paul G ; Bronk Ramsey, Christopher ; Reimer, Paula J ; Scott, E Marian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a425t-e51f566a2049879491c142b5548679a9dd02aef4a063053a22501fd1dc76ed4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bayesian analysis</topic><topic>Calendars</topic><topic>Calibration</topic><topic>Calibration Curves and Construction</topic><topic>Carbon 14</topic><topic>Computer simulation</topic><topic>Conference Paper</topic><topic>Confidence</topic><topic>Construction</topic><topic>Markov chains</topic><topic>Methodology</topic><topic>Modelling</topic><topic>Random walk</topic><topic>Redesign</topic><topic>Spline functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heaton, Timothy J</creatorcontrib><creatorcontrib>Blaauw, Maarten</creatorcontrib><creatorcontrib>Blackwell, Paul G</creatorcontrib><creatorcontrib>Bronk Ramsey, Christopher</creatorcontrib><creatorcontrib>Reimer, Paula J</creatorcontrib><creatorcontrib>Scott, E Marian</creatorcontrib><collection>Cambridge Open Access Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Database (Proquest)</collection><collection>ProQuest Central UK/Ireland</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Radiocarbon</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heaton, Timothy J</au><au>Blaauw, Maarten</au><au>Blackwell, Paul G</au><au>Bronk Ramsey, Christopher</au><au>Reimer, Paula J</au><au>Scott, E Marian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The IntCal20 Approach to Radiocarbon Calibration Curve Construction: A New Methodology Using Bayesian Splines and Errors-in-Variables</atitle><jtitle>Radiocarbon</jtitle><addtitle>Radiocarbon</addtitle><date>2020-08</date><risdate>2020</risdate><volume>62</volume><issue>4</issue><spage>821</spage><epage>863</epage><pages>821-863</pages><issn>0033-8222</issn><eissn>1945-5755</eissn><abstract>To create a reliable radiocarbon calibration curve, one needs not only high-quality data but also a robust statistical methodology. The unique aspects of much of the calibration data provide considerable modeling challenges and require a made-to-measure approach to curve construction that accurately represents and adapts to these individualities, bringing the data together into a single curve. For IntCal20, the statistical methodology has undergone a complete redesign, from the random walk used in IntCal04, IntCal09 and IntCal13, to an approach based upon Bayesian splines with errors-in-variables. The new spline approach is still fitted using Markov Chain Monte Carlo (MCMC) but offers considerable advantages over the previous random walk, including faster and more reliable curve construction together with greatly increased flexibility and detail in modeling choices. This paper describes the new methodology together with the tailored modifications required to integrate the various datasets. For an end-user, the key changes include the recognition and estimation of potential over-dispersion in 14C determinations, and its consequences on calibration which we address through the provision of predictive intervals on the curve; improvements to the modeling of rapid 14C excursions and reservoir ages/dead carbon fractions; and modifications made to, hopefully, ensure better mixing of the MCMC which consequently increase confidence in the estimated curve.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1017/RDC.2020.46</doi><tpages>43</tpages><orcidid>https://orcid.org/0000-0002-5680-1515</orcidid><orcidid>https://orcid.org/0000-0002-9994-142X</orcidid><orcidid>https://orcid.org/0000-0001-9238-2146</orcidid><orcidid>https://orcid.org/0000-0002-3709-0623</orcidid><orcidid>https://orcid.org/0000-0002-3141-4914</orcidid><orcidid>https://orcid.org/0000-0002-8641-9309</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0033-8222
ispartof Radiocarbon, 2020-08, Vol.62 (4), p.821-863
issn 0033-8222
1945-5755
language eng
recordid cdi_proquest_journals_2444554533
source Cambridge Journals - Connect here FIRST to enable access; Free Full-Text Journals in Chemistry
subjects Bayesian analysis
Calendars
Calibration
Calibration Curves and Construction
Carbon 14
Computer simulation
Conference Paper
Confidence
Construction
Markov chains
Methodology
Modelling
Random walk
Redesign
Spline functions
title The IntCal20 Approach to Radiocarbon Calibration Curve Construction: A New Methodology Using Bayesian Splines and Errors-in-Variables
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T07%3A53%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20IntCal20%20Approach%20to%20Radiocarbon%20Calibration%20Curve%20Construction:%20A%20New%20Methodology%20Using%20Bayesian%20Splines%20and%20Errors-in-Variables&rft.jtitle=Radiocarbon&rft.au=Heaton,%20Timothy%20J&rft.date=2020-08&rft.volume=62&rft.issue=4&rft.spage=821&rft.epage=863&rft.pages=821-863&rft.issn=0033-8222&rft.eissn=1945-5755&rft_id=info:doi/10.1017/RDC.2020.46&rft_dat=%3Cproquest_cross%3E2444554533%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2444554533&rft_id=info:pmid/&rft_cupid=10_1017_RDC_2020_46&rfr_iscdi=true