Degradation of High‐Nickel‐Layered Oxide Cathodes from Surface to Bulk: A Comprehensive Structural, Chemical, and Electrical Analysis

Multiple applications of lithium‐ion batteries in energy storage systems and electric vehicles require highly stable electrode materials for long‐term battery operation. Among the various cathode materials, high‐Ni cathode materials enable a high energy density. However, cathode degradation accompan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2020-09, Vol.10 (36), p.n/a
Hauptverfasser: Ko, Dong‐Su, Park, Jun‐Ho, Yu, Byong Yong, Ahn, Docheon, Kim, Kihong, Han, Heung Nam, Jeon, Woo Sung, Jung, Changhoon, Manthiram, Arumugram
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 36
container_start_page
container_title Advanced energy materials
container_volume 10
creator Ko, Dong‐Su
Park, Jun‐Ho
Yu, Byong Yong
Ahn, Docheon
Kim, Kihong
Han, Heung Nam
Jeon, Woo Sung
Jung, Changhoon
Manthiram, Arumugram
description Multiple applications of lithium‐ion batteries in energy storage systems and electric vehicles require highly stable electrode materials for long‐term battery operation. Among the various cathode materials, high‐Ni cathode materials enable a high energy density. However, cathode degradation accompanied by complex chemical and structural changes results in capacity and voltage fading in batteries. Cathode degradation remains poorly understood; the majority of studies have only explored the oxidation states of transition‐metal ions in localized areas and have rarely evaluated chemical degradation in complete particles after prolonged cycling. This study systematically investigates the degradation of a high‐Ni cathode by comparing the chemical, structural, and electrical changes in pristine and 500 times‐cycled cathodes. Electron probe micro‐analysis and X‐ray energy dispersive spectroscopy reveal changes in the Ni:O ratio from 1:2 to 1:1 over a large area inside the secondary particle. Electron energy loss spectroscopy analysis related to structural changes is performed for the entire primary particle area to visualize the oxidation state of transition‐metal ions in two dimensions. The results imply that the observed monotonic capacity fade without unusual changes is due to the continuous formation of the Ni2+ phase from the surface to the bulk through chemical and structural degradation. The degradation of the high‐Ni layered oxide cathode is systematically investigated by comparing a pristine and 500‐cycled full‐cell through analyzing the microstructural visualization of the structural, chemical, and electrical changes from micrometer‐scale to the nanometer‐scale. This reveals that the monotonic capacity fade is due to the continuous formation of Ni2+ phase at the surface and bulk via chemical and structural degradation.
doi_str_mv 10.1002/aenm.202001035
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2444525581</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2444525581</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3565-77c3da573654a5414fb6d2b61940e87561f0d9d1656c374f3ee577fbec4d1fd43</originalsourceid><addsrcrecordid>eNqFkD9PwzAQxSMEEqiwMltipcWO_6RhK6FQpEIHYI5c-0wMSVzsBOjGysZn5JOQqAhGbrl30u-dnl4UHRI8IhjHJxLqahTjGGOCKd-K9oggbCjGDG__ahrvRgchPOJuWNpxdC_6OIcHL7VsrKuRM2hmH4qv988bq56g7MRcrsGDRos3qwFlsimchoCMdxW6bb2RClDj0FlbPp2iCcpctfJQQB3sC6Dbxreqab0sj1FWQGVVr2St0bQE1fj-RpNalutgw360Y2QZ4OBnD6L7i-ldNhvOF5dX2WQ-VJQLPkwSRbXkCRWcSc4IM0uh46UgKcMwTrggButUE8GFogkzFIAniVmCYpoYzeggOtr8XXn33EJo8kfX-i5EyGPGGI85H5OOGm0o5V0IHky-8raSfp0TnPeN533j-W_jnSHdGF5tCet_6Hwyvbn-834D3g6G9Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2444525581</pqid></control><display><type>article</type><title>Degradation of High‐Nickel‐Layered Oxide Cathodes from Surface to Bulk: A Comprehensive Structural, Chemical, and Electrical Analysis</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ko, Dong‐Su ; Park, Jun‐Ho ; Yu, Byong Yong ; Ahn, Docheon ; Kim, Kihong ; Han, Heung Nam ; Jeon, Woo Sung ; Jung, Changhoon ; Manthiram, Arumugram</creator><creatorcontrib>Ko, Dong‐Su ; Park, Jun‐Ho ; Yu, Byong Yong ; Ahn, Docheon ; Kim, Kihong ; Han, Heung Nam ; Jeon, Woo Sung ; Jung, Changhoon ; Manthiram, Arumugram</creatorcontrib><description>Multiple applications of lithium‐ion batteries in energy storage systems and electric vehicles require highly stable electrode materials for long‐term battery operation. Among the various cathode materials, high‐Ni cathode materials enable a high energy density. However, cathode degradation accompanied by complex chemical and structural changes results in capacity and voltage fading in batteries. Cathode degradation remains poorly understood; the majority of studies have only explored the oxidation states of transition‐metal ions in localized areas and have rarely evaluated chemical degradation in complete particles after prolonged cycling. This study systematically investigates the degradation of a high‐Ni cathode by comparing the chemical, structural, and electrical changes in pristine and 500 times‐cycled cathodes. Electron probe micro‐analysis and X‐ray energy dispersive spectroscopy reveal changes in the Ni:O ratio from 1:2 to 1:1 over a large area inside the secondary particle. Electron energy loss spectroscopy analysis related to structural changes is performed for the entire primary particle area to visualize the oxidation state of transition‐metal ions in two dimensions. The results imply that the observed monotonic capacity fade without unusual changes is due to the continuous formation of the Ni2+ phase from the surface to the bulk through chemical and structural degradation. The degradation of the high‐Ni layered oxide cathode is systematically investigated by comparing a pristine and 500‐cycled full‐cell through analyzing the microstructural visualization of the structural, chemical, and electrical changes from micrometer‐scale to the nanometer‐scale. This reveals that the monotonic capacity fade is due to the continuous formation of Ni2+ phase at the surface and bulk via chemical and structural degradation.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202001035</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Cathodes ; characterization ; Degradation ; Electric vehicles ; Electrode materials ; Electron energy loss spectroscopy ; Electron probes ; Energy dissipation ; Energy storage ; Flux density ; high‐nickel cathodes ; layered oxide ; Lithium-ion batteries ; Metal ions ; Nickel ; Oxidation ; Spectrum analysis ; Storage batteries ; Storage systems ; Valence</subject><ispartof>Advanced energy materials, 2020-09, Vol.10 (36), p.n/a</ispartof><rights>2020 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3565-77c3da573654a5414fb6d2b61940e87561f0d9d1656c374f3ee577fbec4d1fd43</citedby><cites>FETCH-LOGICAL-c3565-77c3da573654a5414fb6d2b61940e87561f0d9d1656c374f3ee577fbec4d1fd43</cites><orcidid>0000-0003-0237-9563</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.202001035$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.202001035$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Ko, Dong‐Su</creatorcontrib><creatorcontrib>Park, Jun‐Ho</creatorcontrib><creatorcontrib>Yu, Byong Yong</creatorcontrib><creatorcontrib>Ahn, Docheon</creatorcontrib><creatorcontrib>Kim, Kihong</creatorcontrib><creatorcontrib>Han, Heung Nam</creatorcontrib><creatorcontrib>Jeon, Woo Sung</creatorcontrib><creatorcontrib>Jung, Changhoon</creatorcontrib><creatorcontrib>Manthiram, Arumugram</creatorcontrib><title>Degradation of High‐Nickel‐Layered Oxide Cathodes from Surface to Bulk: A Comprehensive Structural, Chemical, and Electrical Analysis</title><title>Advanced energy materials</title><description>Multiple applications of lithium‐ion batteries in energy storage systems and electric vehicles require highly stable electrode materials for long‐term battery operation. Among the various cathode materials, high‐Ni cathode materials enable a high energy density. However, cathode degradation accompanied by complex chemical and structural changes results in capacity and voltage fading in batteries. Cathode degradation remains poorly understood; the majority of studies have only explored the oxidation states of transition‐metal ions in localized areas and have rarely evaluated chemical degradation in complete particles after prolonged cycling. This study systematically investigates the degradation of a high‐Ni cathode by comparing the chemical, structural, and electrical changes in pristine and 500 times‐cycled cathodes. Electron probe micro‐analysis and X‐ray energy dispersive spectroscopy reveal changes in the Ni:O ratio from 1:2 to 1:1 over a large area inside the secondary particle. Electron energy loss spectroscopy analysis related to structural changes is performed for the entire primary particle area to visualize the oxidation state of transition‐metal ions in two dimensions. The results imply that the observed monotonic capacity fade without unusual changes is due to the continuous formation of the Ni2+ phase from the surface to the bulk through chemical and structural degradation. The degradation of the high‐Ni layered oxide cathode is systematically investigated by comparing a pristine and 500‐cycled full‐cell through analyzing the microstructural visualization of the structural, chemical, and electrical changes from micrometer‐scale to the nanometer‐scale. This reveals that the monotonic capacity fade is due to the continuous formation of Ni2+ phase at the surface and bulk via chemical and structural degradation.</description><subject>Cathodes</subject><subject>characterization</subject><subject>Degradation</subject><subject>Electric vehicles</subject><subject>Electrode materials</subject><subject>Electron energy loss spectroscopy</subject><subject>Electron probes</subject><subject>Energy dissipation</subject><subject>Energy storage</subject><subject>Flux density</subject><subject>high‐nickel cathodes</subject><subject>layered oxide</subject><subject>Lithium-ion batteries</subject><subject>Metal ions</subject><subject>Nickel</subject><subject>Oxidation</subject><subject>Spectrum analysis</subject><subject>Storage batteries</subject><subject>Storage systems</subject><subject>Valence</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkD9PwzAQxSMEEqiwMltipcWO_6RhK6FQpEIHYI5c-0wMSVzsBOjGysZn5JOQqAhGbrl30u-dnl4UHRI8IhjHJxLqahTjGGOCKd-K9oggbCjGDG__ahrvRgchPOJuWNpxdC_6OIcHL7VsrKuRM2hmH4qv988bq56g7MRcrsGDRos3qwFlsimchoCMdxW6bb2RClDj0FlbPp2iCcpctfJQQB3sC6Dbxreqab0sj1FWQGVVr2St0bQE1fj-RpNalutgw360Y2QZ4OBnD6L7i-ldNhvOF5dX2WQ-VJQLPkwSRbXkCRWcSc4IM0uh46UgKcMwTrggButUE8GFogkzFIAniVmCYpoYzeggOtr8XXn33EJo8kfX-i5EyGPGGI85H5OOGm0o5V0IHky-8raSfp0TnPeN533j-W_jnSHdGF5tCet_6Hwyvbn-834D3g6G9Q</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Ko, Dong‐Su</creator><creator>Park, Jun‐Ho</creator><creator>Yu, Byong Yong</creator><creator>Ahn, Docheon</creator><creator>Kim, Kihong</creator><creator>Han, Heung Nam</creator><creator>Jeon, Woo Sung</creator><creator>Jung, Changhoon</creator><creator>Manthiram, Arumugram</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0237-9563</orcidid></search><sort><creationdate>20200901</creationdate><title>Degradation of High‐Nickel‐Layered Oxide Cathodes from Surface to Bulk: A Comprehensive Structural, Chemical, and Electrical Analysis</title><author>Ko, Dong‐Su ; Park, Jun‐Ho ; Yu, Byong Yong ; Ahn, Docheon ; Kim, Kihong ; Han, Heung Nam ; Jeon, Woo Sung ; Jung, Changhoon ; Manthiram, Arumugram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3565-77c3da573654a5414fb6d2b61940e87561f0d9d1656c374f3ee577fbec4d1fd43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cathodes</topic><topic>characterization</topic><topic>Degradation</topic><topic>Electric vehicles</topic><topic>Electrode materials</topic><topic>Electron energy loss spectroscopy</topic><topic>Electron probes</topic><topic>Energy dissipation</topic><topic>Energy storage</topic><topic>Flux density</topic><topic>high‐nickel cathodes</topic><topic>layered oxide</topic><topic>Lithium-ion batteries</topic><topic>Metal ions</topic><topic>Nickel</topic><topic>Oxidation</topic><topic>Spectrum analysis</topic><topic>Storage batteries</topic><topic>Storage systems</topic><topic>Valence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ko, Dong‐Su</creatorcontrib><creatorcontrib>Park, Jun‐Ho</creatorcontrib><creatorcontrib>Yu, Byong Yong</creatorcontrib><creatorcontrib>Ahn, Docheon</creatorcontrib><creatorcontrib>Kim, Kihong</creatorcontrib><creatorcontrib>Han, Heung Nam</creatorcontrib><creatorcontrib>Jeon, Woo Sung</creatorcontrib><creatorcontrib>Jung, Changhoon</creatorcontrib><creatorcontrib>Manthiram, Arumugram</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ko, Dong‐Su</au><au>Park, Jun‐Ho</au><au>Yu, Byong Yong</au><au>Ahn, Docheon</au><au>Kim, Kihong</au><au>Han, Heung Nam</au><au>Jeon, Woo Sung</au><au>Jung, Changhoon</au><au>Manthiram, Arumugram</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Degradation of High‐Nickel‐Layered Oxide Cathodes from Surface to Bulk: A Comprehensive Structural, Chemical, and Electrical Analysis</atitle><jtitle>Advanced energy materials</jtitle><date>2020-09-01</date><risdate>2020</risdate><volume>10</volume><issue>36</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Multiple applications of lithium‐ion batteries in energy storage systems and electric vehicles require highly stable electrode materials for long‐term battery operation. Among the various cathode materials, high‐Ni cathode materials enable a high energy density. However, cathode degradation accompanied by complex chemical and structural changes results in capacity and voltage fading in batteries. Cathode degradation remains poorly understood; the majority of studies have only explored the oxidation states of transition‐metal ions in localized areas and have rarely evaluated chemical degradation in complete particles after prolonged cycling. This study systematically investigates the degradation of a high‐Ni cathode by comparing the chemical, structural, and electrical changes in pristine and 500 times‐cycled cathodes. Electron probe micro‐analysis and X‐ray energy dispersive spectroscopy reveal changes in the Ni:O ratio from 1:2 to 1:1 over a large area inside the secondary particle. Electron energy loss spectroscopy analysis related to structural changes is performed for the entire primary particle area to visualize the oxidation state of transition‐metal ions in two dimensions. The results imply that the observed monotonic capacity fade without unusual changes is due to the continuous formation of the Ni2+ phase from the surface to the bulk through chemical and structural degradation. The degradation of the high‐Ni layered oxide cathode is systematically investigated by comparing a pristine and 500‐cycled full‐cell through analyzing the microstructural visualization of the structural, chemical, and electrical changes from micrometer‐scale to the nanometer‐scale. This reveals that the monotonic capacity fade is due to the continuous formation of Ni2+ phase at the surface and bulk via chemical and structural degradation.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202001035</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0237-9563</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2020-09, Vol.10 (36), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_journals_2444525581
source Wiley Online Library Journals Frontfile Complete
subjects Cathodes
characterization
Degradation
Electric vehicles
Electrode materials
Electron energy loss spectroscopy
Electron probes
Energy dissipation
Energy storage
Flux density
high‐nickel cathodes
layered oxide
Lithium-ion batteries
Metal ions
Nickel
Oxidation
Spectrum analysis
Storage batteries
Storage systems
Valence
title Degradation of High‐Nickel‐Layered Oxide Cathodes from Surface to Bulk: A Comprehensive Structural, Chemical, and Electrical Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T09%3A35%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Degradation%20of%20High%E2%80%90Nickel%E2%80%90Layered%20Oxide%20Cathodes%20from%20Surface%20to%20Bulk:%20A%20Comprehensive%20Structural,%20Chemical,%20and%20Electrical%20Analysis&rft.jtitle=Advanced%20energy%20materials&rft.au=Ko,%20Dong%E2%80%90Su&rft.date=2020-09-01&rft.volume=10&rft.issue=36&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202001035&rft_dat=%3Cproquest_cross%3E2444525581%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2444525581&rft_id=info:pmid/&rfr_iscdi=true