Irradiation-assisted stress corrosion cracking of Type 347 and Type 316 steels irradiated in commercial pressurized water reactors
Investigations of Type 347 and Type 316 austenitic stainless steel baffle-former bolt failures at 4-loop downflow pressurized water reactors (PWRs) in the US have identified significant amounts of transgranular cracking on the fracture surfaces along with intergranular cracking and ductile rupture....
Gespeichert in:
Veröffentlicht in: | Journal of nuclear materials 2020-08, Vol.536, p.152182, Article 152182 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 152182 |
container_title | Journal of nuclear materials |
container_volume | 536 |
creator | Ickes, Michael R. McKinley, Joshua Lee, Jung-Kun Smith, Jean M. Ruminski, Andrew M. Burke, Michael A. |
description | Investigations of Type 347 and Type 316 austenitic stainless steel baffle-former bolt failures at 4-loop downflow pressurized water reactors (PWRs) in the US have identified significant amounts of transgranular cracking on the fracture surfaces along with intergranular cracking and ductile rupture. The expected failure mode for baffle-former bolts is irradiation-assisted stress corrosion cracking (IASCC), which typically results in an intergranular cracking mode. The presence of transgranular cracking raised the question of whether IASCC was responsible for the failures, or if a fatigue component was contributory. Detailed fractography and metallography of bolts with and without cracks confirmed that an environmentally-assisted cracking mechanism was responsible. Reviews of the literature identified numerous cases where stress corrosion cracks (including irradiation-assisted stress corrosion cracks) in austenitic stainless steels transitioned from intergranular to transgranular, typically as a more severe stress state developed. The potential cracking mechanisms are discussed. This allowed the conclusion that IASCC was responsible for the degradation observed in the baffle-former bolts, though a component of alternating loading cannot be excluded. The downflow plant configuration results in increased stress on neighboring intact bolts after bolt failure, resulting in the development of ‘clusters’ of failed bolts, which grew as additional bolts failed. This cluster growth contributed to the severe stress state imposed on the bolts. |
doi_str_mv | 10.1016/j.jnucmat.2020.152182 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2444101751</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022311519314989</els_id><sourcerecordid>2444101751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-cc08e5a919b223169f38db9d98958b43b6c256c80b83a5b2971a7be2361af9fb3</originalsourceid><addsrcrecordid>eNqFkE1LAzEURYMoWKs_QQi4npqPyUyyEil-FApu6jpkMm8kYzupL1NFl_5yU9q9q5Dcd88jh5Brzmac8eq2n_XDzm_cOBNM5DcluBYnZMJ1LYtSC3ZKJowJUUjO1Tm5SKlnjCnD1IT8LhBdG9wY4lC4lEIaoaVpREiJ-ogYU06oR-ffw_BGY0dX31ugsqypG9rjhVe5ArBONBxxGRJyLW42gD64Nd3uiTsMPzn5yjlSBOfHiOmSnHVuneDqeE7J6-PDav5cLF-eFvP7ZeGlrMfCe6ZBOcNNI0TeaDqp28a0Rhulm1I2lReq8po1WjrVCFNzVzcgZMVdZ7pGTsnNgbvF-LGDNNo-7nDIK60oyzKrrBXPU-ow5fPXE0Jntxg2Dr8tZ3av2_b2qNvudduD7ty7O_SyBfgMgDb5AIOHNiD40bYx_EP4A_uZjNg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2444101751</pqid></control><display><type>article</type><title>Irradiation-assisted stress corrosion cracking of Type 347 and Type 316 steels irradiated in commercial pressurized water reactors</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Ickes, Michael R. ; McKinley, Joshua ; Lee, Jung-Kun ; Smith, Jean M. ; Ruminski, Andrew M. ; Burke, Michael A.</creator><creatorcontrib>Ickes, Michael R. ; McKinley, Joshua ; Lee, Jung-Kun ; Smith, Jean M. ; Ruminski, Andrew M. ; Burke, Michael A.</creatorcontrib><description>Investigations of Type 347 and Type 316 austenitic stainless steel baffle-former bolt failures at 4-loop downflow pressurized water reactors (PWRs) in the US have identified significant amounts of transgranular cracking on the fracture surfaces along with intergranular cracking and ductile rupture. The expected failure mode for baffle-former bolts is irradiation-assisted stress corrosion cracking (IASCC), which typically results in an intergranular cracking mode. The presence of transgranular cracking raised the question of whether IASCC was responsible for the failures, or if a fatigue component was contributory. Detailed fractography and metallography of bolts with and without cracks confirmed that an environmentally-assisted cracking mechanism was responsible. Reviews of the literature identified numerous cases where stress corrosion cracks (including irradiation-assisted stress corrosion cracks) in austenitic stainless steels transitioned from intergranular to transgranular, typically as a more severe stress state developed. The potential cracking mechanisms are discussed. This allowed the conclusion that IASCC was responsible for the degradation observed in the baffle-former bolts, though a component of alternating loading cannot be excluded. The downflow plant configuration results in increased stress on neighboring intact bolts after bolt failure, resulting in the development of ‘clusters’ of failed bolts, which grew as additional bolts failed. This cluster growth contributed to the severe stress state imposed on the bolts.</description><identifier>ISSN: 0022-3115</identifier><identifier>EISSN: 1873-4820</identifier><identifier>DOI: 10.1016/j.jnucmat.2020.152182</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Austenitic stainless steels ; Baffle-former bolts ; Bolts ; Corrosion ; Ductile fracture ; Ductile-brittle transition ; Environmentally assisted cracking ; Failure modes ; Fatigue cracks ; Fractography ; Fracture mechanics ; Fracture surfaces ; Intergranular corrosion ; Intergranular fracture ; Irradiation ; Irradiation-assisted stress corrosion cracking ; Literature reviews ; Metallography ; Nuclear energy ; Pressurized water reactors ; Radiation ; Reactors ; Stainless steel ; Stress corrosion ; Stress corrosion cracking ; Stress state</subject><ispartof>Journal of nuclear materials, 2020-08, Vol.536, p.152182, Article 152182</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Aug 1, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-cc08e5a919b223169f38db9d98958b43b6c256c80b83a5b2971a7be2361af9fb3</citedby><cites>FETCH-LOGICAL-c337t-cc08e5a919b223169f38db9d98958b43b6c256c80b83a5b2971a7be2361af9fb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jnucmat.2020.152182$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Ickes, Michael R.</creatorcontrib><creatorcontrib>McKinley, Joshua</creatorcontrib><creatorcontrib>Lee, Jung-Kun</creatorcontrib><creatorcontrib>Smith, Jean M.</creatorcontrib><creatorcontrib>Ruminski, Andrew M.</creatorcontrib><creatorcontrib>Burke, Michael A.</creatorcontrib><title>Irradiation-assisted stress corrosion cracking of Type 347 and Type 316 steels irradiated in commercial pressurized water reactors</title><title>Journal of nuclear materials</title><description>Investigations of Type 347 and Type 316 austenitic stainless steel baffle-former bolt failures at 4-loop downflow pressurized water reactors (PWRs) in the US have identified significant amounts of transgranular cracking on the fracture surfaces along with intergranular cracking and ductile rupture. The expected failure mode for baffle-former bolts is irradiation-assisted stress corrosion cracking (IASCC), which typically results in an intergranular cracking mode. The presence of transgranular cracking raised the question of whether IASCC was responsible for the failures, or if a fatigue component was contributory. Detailed fractography and metallography of bolts with and without cracks confirmed that an environmentally-assisted cracking mechanism was responsible. Reviews of the literature identified numerous cases where stress corrosion cracks (including irradiation-assisted stress corrosion cracks) in austenitic stainless steels transitioned from intergranular to transgranular, typically as a more severe stress state developed. The potential cracking mechanisms are discussed. This allowed the conclusion that IASCC was responsible for the degradation observed in the baffle-former bolts, though a component of alternating loading cannot be excluded. The downflow plant configuration results in increased stress on neighboring intact bolts after bolt failure, resulting in the development of ‘clusters’ of failed bolts, which grew as additional bolts failed. This cluster growth contributed to the severe stress state imposed on the bolts.</description><subject>Austenitic stainless steels</subject><subject>Baffle-former bolts</subject><subject>Bolts</subject><subject>Corrosion</subject><subject>Ductile fracture</subject><subject>Ductile-brittle transition</subject><subject>Environmentally assisted cracking</subject><subject>Failure modes</subject><subject>Fatigue cracks</subject><subject>Fractography</subject><subject>Fracture mechanics</subject><subject>Fracture surfaces</subject><subject>Intergranular corrosion</subject><subject>Intergranular fracture</subject><subject>Irradiation</subject><subject>Irradiation-assisted stress corrosion cracking</subject><subject>Literature reviews</subject><subject>Metallography</subject><subject>Nuclear energy</subject><subject>Pressurized water reactors</subject><subject>Radiation</subject><subject>Reactors</subject><subject>Stainless steel</subject><subject>Stress corrosion</subject><subject>Stress corrosion cracking</subject><subject>Stress state</subject><issn>0022-3115</issn><issn>1873-4820</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEURYMoWKs_QQi4npqPyUyyEil-FApu6jpkMm8kYzupL1NFl_5yU9q9q5Dcd88jh5Brzmac8eq2n_XDzm_cOBNM5DcluBYnZMJ1LYtSC3ZKJowJUUjO1Tm5SKlnjCnD1IT8LhBdG9wY4lC4lEIaoaVpREiJ-ogYU06oR-ffw_BGY0dX31ugsqypG9rjhVe5ArBONBxxGRJyLW42gD64Nd3uiTsMPzn5yjlSBOfHiOmSnHVuneDqeE7J6-PDav5cLF-eFvP7ZeGlrMfCe6ZBOcNNI0TeaDqp28a0Rhulm1I2lReq8po1WjrVCFNzVzcgZMVdZ7pGTsnNgbvF-LGDNNo-7nDIK60oyzKrrBXPU-ow5fPXE0Jntxg2Dr8tZ3av2_b2qNvudduD7ty7O_SyBfgMgDb5AIOHNiD40bYx_EP4A_uZjNg</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Ickes, Michael R.</creator><creator>McKinley, Joshua</creator><creator>Lee, Jung-Kun</creator><creator>Smith, Jean M.</creator><creator>Ruminski, Andrew M.</creator><creator>Burke, Michael A.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>7ST</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20200801</creationdate><title>Irradiation-assisted stress corrosion cracking of Type 347 and Type 316 steels irradiated in commercial pressurized water reactors</title><author>Ickes, Michael R. ; McKinley, Joshua ; Lee, Jung-Kun ; Smith, Jean M. ; Ruminski, Andrew M. ; Burke, Michael A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-cc08e5a919b223169f38db9d98958b43b6c256c80b83a5b2971a7be2361af9fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Austenitic stainless steels</topic><topic>Baffle-former bolts</topic><topic>Bolts</topic><topic>Corrosion</topic><topic>Ductile fracture</topic><topic>Ductile-brittle transition</topic><topic>Environmentally assisted cracking</topic><topic>Failure modes</topic><topic>Fatigue cracks</topic><topic>Fractography</topic><topic>Fracture mechanics</topic><topic>Fracture surfaces</topic><topic>Intergranular corrosion</topic><topic>Intergranular fracture</topic><topic>Irradiation</topic><topic>Irradiation-assisted stress corrosion cracking</topic><topic>Literature reviews</topic><topic>Metallography</topic><topic>Nuclear energy</topic><topic>Pressurized water reactors</topic><topic>Radiation</topic><topic>Reactors</topic><topic>Stainless steel</topic><topic>Stress corrosion</topic><topic>Stress corrosion cracking</topic><topic>Stress state</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ickes, Michael R.</creatorcontrib><creatorcontrib>McKinley, Joshua</creatorcontrib><creatorcontrib>Lee, Jung-Kun</creatorcontrib><creatorcontrib>Smith, Jean M.</creatorcontrib><creatorcontrib>Ruminski, Andrew M.</creatorcontrib><creatorcontrib>Burke, Michael A.</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of nuclear materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ickes, Michael R.</au><au>McKinley, Joshua</au><au>Lee, Jung-Kun</au><au>Smith, Jean M.</au><au>Ruminski, Andrew M.</au><au>Burke, Michael A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Irradiation-assisted stress corrosion cracking of Type 347 and Type 316 steels irradiated in commercial pressurized water reactors</atitle><jtitle>Journal of nuclear materials</jtitle><date>2020-08-01</date><risdate>2020</risdate><volume>536</volume><spage>152182</spage><pages>152182-</pages><artnum>152182</artnum><issn>0022-3115</issn><eissn>1873-4820</eissn><abstract>Investigations of Type 347 and Type 316 austenitic stainless steel baffle-former bolt failures at 4-loop downflow pressurized water reactors (PWRs) in the US have identified significant amounts of transgranular cracking on the fracture surfaces along with intergranular cracking and ductile rupture. The expected failure mode for baffle-former bolts is irradiation-assisted stress corrosion cracking (IASCC), which typically results in an intergranular cracking mode. The presence of transgranular cracking raised the question of whether IASCC was responsible for the failures, or if a fatigue component was contributory. Detailed fractography and metallography of bolts with and without cracks confirmed that an environmentally-assisted cracking mechanism was responsible. Reviews of the literature identified numerous cases where stress corrosion cracks (including irradiation-assisted stress corrosion cracks) in austenitic stainless steels transitioned from intergranular to transgranular, typically as a more severe stress state developed. The potential cracking mechanisms are discussed. This allowed the conclusion that IASCC was responsible for the degradation observed in the baffle-former bolts, though a component of alternating loading cannot be excluded. The downflow plant configuration results in increased stress on neighboring intact bolts after bolt failure, resulting in the development of ‘clusters’ of failed bolts, which grew as additional bolts failed. This cluster growth contributed to the severe stress state imposed on the bolts.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jnucmat.2020.152182</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3115 |
ispartof | Journal of nuclear materials, 2020-08, Vol.536, p.152182, Article 152182 |
issn | 0022-3115 1873-4820 |
language | eng |
recordid | cdi_proquest_journals_2444101751 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Austenitic stainless steels Baffle-former bolts Bolts Corrosion Ductile fracture Ductile-brittle transition Environmentally assisted cracking Failure modes Fatigue cracks Fractography Fracture mechanics Fracture surfaces Intergranular corrosion Intergranular fracture Irradiation Irradiation-assisted stress corrosion cracking Literature reviews Metallography Nuclear energy Pressurized water reactors Radiation Reactors Stainless steel Stress corrosion Stress corrosion cracking Stress state |
title | Irradiation-assisted stress corrosion cracking of Type 347 and Type 316 steels irradiated in commercial pressurized water reactors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T11%3A26%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Irradiation-assisted%20stress%20corrosion%20cracking%20of%20Type%20347%20and%20Type%20316%20steels%20irradiated%20in%20commercial%20pressurized%20water%20reactors&rft.jtitle=Journal%20of%20nuclear%20materials&rft.au=Ickes,%20Michael%20R.&rft.date=2020-08-01&rft.volume=536&rft.spage=152182&rft.pages=152182-&rft.artnum=152182&rft.issn=0022-3115&rft.eissn=1873-4820&rft_id=info:doi/10.1016/j.jnucmat.2020.152182&rft_dat=%3Cproquest_cross%3E2444101751%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2444101751&rft_id=info:pmid/&rft_els_id=S0022311519314989&rfr_iscdi=true |