Determination of equivalent transversely isotropic material parameters for sheet-layered lamination stacks

•Accurate transversely isotropic material parameters of bonded lamination stacks.•Material parameter determination ab initio by different homogenization methods.•High material parameter sensitivity to the interlaminar varnish stiffness and thickness.•Varnish thickness measurement by laser scanning m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mechanical systems and signal processing 2020-11, Vol.145, p.106915, Article 106915
Hauptverfasser: Baloglu, Maximilian Volkan, Ziegler, Marco, Franke, Jörg, Willner, Kai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 106915
container_title Mechanical systems and signal processing
container_volume 145
creator Baloglu, Maximilian Volkan
Ziegler, Marco
Franke, Jörg
Willner, Kai
description •Accurate transversely isotropic material parameters of bonded lamination stacks.•Material parameter determination ab initio by different homogenization methods.•High material parameter sensitivity to the interlaminar varnish stiffness and thickness.•Varnish thickness measurement by laser scanning microscopy and nanoindentation.•Proving the capability with the help of a numerical and experimental modal analysis. This paper covers the accurate prediction of equivalent homogenized material parameters for sheet-layered lamination stacks, which are located in rotors and stators of electric motors. Modeling the structural and dynamic behavior of these parts is a challenging task due to the special layered design of these stacks, with a huge influence of the applied joining technology, here a full-surface bonding. For the derivation of equivalent transversely isotropic material parameters, three procedures, namely the rule of mixture, an analytical and numerical homogenization, are compared eventuating in only minor differences between them. The investigations show that rather the input parameters for these averaging methods, i.e. the individual material parameters of each layer, are crucial for an accurate modeling. Experimental tests are carried out on coated sheet laminations to determine the initially unknown bonding varnish thickness with two different measurement methods, the 3D laser scanning microscopy and instrumented indentation testing, resulting in almost equivalent and reasonable values. The capability of the ab initio deduced material parameters is demonstrated by comparing an experimental and numerical modal analysis of a sample lamination stack showing an almost perfect agreement. By this, it is also revealed that a varnish Young’s modulus measured by nanoindentation is overestimated from a macroscopic point of view. Damping parameters of a bonded lamination stack are determined with the help of the experimental modal analysis showing a relatively low damped system.
doi_str_mv 10.1016/j.ymssp.2020.106915
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2444099459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0888327020303010</els_id><sourcerecordid>2444099459</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-ea6e40001a5e488186c28ddbcb981d22c364a04ffa18bd0a5fc4a7c418c80043</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-Ai8Bz12TNO2mBw-yfsKCl72H2XSKqW3TTbIL_fe2Vjx6Ghje553hIeSWsxVnPL-vV0MbQr8STEybvODZGVlwVuQJFzw_JwumlEpSsWaX5CqEmjFWSJYvSP2EEX1rO4jWddRVFA9He4IGu0ijhy6c0AdsBmqDi9711tAWRsRCQ3vw0E58oJXzNHwixqSBAT2WtIG_1hDBfIVrclFBE_Dmdy7J7uV5t3lLth-v75vHbWLSlMcEIUc5_schQ6kUV7kRqiz3Zl8oXgph0lwCk1UFXO1LBlllJKyN5MooxmS6JHdzbe_d4Ygh6todfTde1EJKyYpCZsWYSueU8S4Ej5XuvW3BD5ozPTnVtf5xqienenY6Ug8zheP_J4teB2OxM1hajybq0tl_-W9hW4Pu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2444099459</pqid></control><display><type>article</type><title>Determination of equivalent transversely isotropic material parameters for sheet-layered lamination stacks</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Baloglu, Maximilian Volkan ; Ziegler, Marco ; Franke, Jörg ; Willner, Kai</creator><creatorcontrib>Baloglu, Maximilian Volkan ; Ziegler, Marco ; Franke, Jörg ; Willner, Kai</creatorcontrib><description>•Accurate transversely isotropic material parameters of bonded lamination stacks.•Material parameter determination ab initio by different homogenization methods.•High material parameter sensitivity to the interlaminar varnish stiffness and thickness.•Varnish thickness measurement by laser scanning microscopy and nanoindentation.•Proving the capability with the help of a numerical and experimental modal analysis. This paper covers the accurate prediction of equivalent homogenized material parameters for sheet-layered lamination stacks, which are located in rotors and stators of electric motors. Modeling the structural and dynamic behavior of these parts is a challenging task due to the special layered design of these stacks, with a huge influence of the applied joining technology, here a full-surface bonding. For the derivation of equivalent transversely isotropic material parameters, three procedures, namely the rule of mixture, an analytical and numerical homogenization, are compared eventuating in only minor differences between them. The investigations show that rather the input parameters for these averaging methods, i.e. the individual material parameters of each layer, are crucial for an accurate modeling. Experimental tests are carried out on coated sheet laminations to determine the initially unknown bonding varnish thickness with two different measurement methods, the 3D laser scanning microscopy and instrumented indentation testing, resulting in almost equivalent and reasonable values. The capability of the ab initio deduced material parameters is demonstrated by comparing an experimental and numerical modal analysis of a sample lamination stack showing an almost perfect agreement. By this, it is also revealed that a varnish Young’s modulus measured by nanoindentation is overestimated from a macroscopic point of view. Damping parameters of a bonded lamination stack are determined with the help of the experimental modal analysis showing a relatively low damped system.</description><identifier>ISSN: 0888-3270</identifier><identifier>EISSN: 1096-1216</identifier><identifier>DOI: 10.1016/j.ymssp.2020.106915</identifier><language>eng</language><publisher>Berlin: Elsevier Ltd</publisher><subject>Bonding ; Damping ; Electric motors ; Equivalence ; Homogenization ; Isotropic material ; Lamination stack ; Laser scanning microscopy ; Material modeling ; Mathematical models ; Measurement methods ; Modal analysis ; Modulus of elasticity ; Nanoindentation ; Parameters ; Scanning microscopy ; Stacks</subject><ispartof>Mechanical systems and signal processing, 2020-11, Vol.145, p.106915, Article 106915</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Nov/Dec 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-ea6e40001a5e488186c28ddbcb981d22c364a04ffa18bd0a5fc4a7c418c80043</citedby><cites>FETCH-LOGICAL-c331t-ea6e40001a5e488186c28ddbcb981d22c364a04ffa18bd0a5fc4a7c418c80043</cites><orcidid>0000-0002-6653-5994</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0888327020303010$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Baloglu, Maximilian Volkan</creatorcontrib><creatorcontrib>Ziegler, Marco</creatorcontrib><creatorcontrib>Franke, Jörg</creatorcontrib><creatorcontrib>Willner, Kai</creatorcontrib><title>Determination of equivalent transversely isotropic material parameters for sheet-layered lamination stacks</title><title>Mechanical systems and signal processing</title><description>•Accurate transversely isotropic material parameters of bonded lamination stacks.•Material parameter determination ab initio by different homogenization methods.•High material parameter sensitivity to the interlaminar varnish stiffness and thickness.•Varnish thickness measurement by laser scanning microscopy and nanoindentation.•Proving the capability with the help of a numerical and experimental modal analysis. This paper covers the accurate prediction of equivalent homogenized material parameters for sheet-layered lamination stacks, which are located in rotors and stators of electric motors. Modeling the structural and dynamic behavior of these parts is a challenging task due to the special layered design of these stacks, with a huge influence of the applied joining technology, here a full-surface bonding. For the derivation of equivalent transversely isotropic material parameters, three procedures, namely the rule of mixture, an analytical and numerical homogenization, are compared eventuating in only minor differences between them. The investigations show that rather the input parameters for these averaging methods, i.e. the individual material parameters of each layer, are crucial for an accurate modeling. Experimental tests are carried out on coated sheet laminations to determine the initially unknown bonding varnish thickness with two different measurement methods, the 3D laser scanning microscopy and instrumented indentation testing, resulting in almost equivalent and reasonable values. The capability of the ab initio deduced material parameters is demonstrated by comparing an experimental and numerical modal analysis of a sample lamination stack showing an almost perfect agreement. By this, it is also revealed that a varnish Young’s modulus measured by nanoindentation is overestimated from a macroscopic point of view. Damping parameters of a bonded lamination stack are determined with the help of the experimental modal analysis showing a relatively low damped system.</description><subject>Bonding</subject><subject>Damping</subject><subject>Electric motors</subject><subject>Equivalence</subject><subject>Homogenization</subject><subject>Isotropic material</subject><subject>Lamination stack</subject><subject>Laser scanning microscopy</subject><subject>Material modeling</subject><subject>Mathematical models</subject><subject>Measurement methods</subject><subject>Modal analysis</subject><subject>Modulus of elasticity</subject><subject>Nanoindentation</subject><subject>Parameters</subject><subject>Scanning microscopy</subject><subject>Stacks</subject><issn>0888-3270</issn><issn>1096-1216</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-Ai8Bz12TNO2mBw-yfsKCl72H2XSKqW3TTbIL_fe2Vjx6Ghje553hIeSWsxVnPL-vV0MbQr8STEybvODZGVlwVuQJFzw_JwumlEpSsWaX5CqEmjFWSJYvSP2EEX1rO4jWddRVFA9He4IGu0ijhy6c0AdsBmqDi9711tAWRsRCQ3vw0E58oJXzNHwixqSBAT2WtIG_1hDBfIVrclFBE_Dmdy7J7uV5t3lLth-v75vHbWLSlMcEIUc5_schQ6kUV7kRqiz3Zl8oXgph0lwCk1UFXO1LBlllJKyN5MooxmS6JHdzbe_d4Ygh6todfTde1EJKyYpCZsWYSueU8S4Ej5XuvW3BD5ozPTnVtf5xqienenY6Ug8zheP_J4teB2OxM1hajybq0tl_-W9hW4Pu</recordid><startdate>202011</startdate><enddate>202011</enddate><creator>Baloglu, Maximilian Volkan</creator><creator>Ziegler, Marco</creator><creator>Franke, Jörg</creator><creator>Willner, Kai</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6653-5994</orcidid></search><sort><creationdate>202011</creationdate><title>Determination of equivalent transversely isotropic material parameters for sheet-layered lamination stacks</title><author>Baloglu, Maximilian Volkan ; Ziegler, Marco ; Franke, Jörg ; Willner, Kai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-ea6e40001a5e488186c28ddbcb981d22c364a04ffa18bd0a5fc4a7c418c80043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bonding</topic><topic>Damping</topic><topic>Electric motors</topic><topic>Equivalence</topic><topic>Homogenization</topic><topic>Isotropic material</topic><topic>Lamination stack</topic><topic>Laser scanning microscopy</topic><topic>Material modeling</topic><topic>Mathematical models</topic><topic>Measurement methods</topic><topic>Modal analysis</topic><topic>Modulus of elasticity</topic><topic>Nanoindentation</topic><topic>Parameters</topic><topic>Scanning microscopy</topic><topic>Stacks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baloglu, Maximilian Volkan</creatorcontrib><creatorcontrib>Ziegler, Marco</creatorcontrib><creatorcontrib>Franke, Jörg</creatorcontrib><creatorcontrib>Willner, Kai</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mechanical systems and signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baloglu, Maximilian Volkan</au><au>Ziegler, Marco</au><au>Franke, Jörg</au><au>Willner, Kai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determination of equivalent transversely isotropic material parameters for sheet-layered lamination stacks</atitle><jtitle>Mechanical systems and signal processing</jtitle><date>2020-11</date><risdate>2020</risdate><volume>145</volume><spage>106915</spage><pages>106915-</pages><artnum>106915</artnum><issn>0888-3270</issn><eissn>1096-1216</eissn><abstract>•Accurate transversely isotropic material parameters of bonded lamination stacks.•Material parameter determination ab initio by different homogenization methods.•High material parameter sensitivity to the interlaminar varnish stiffness and thickness.•Varnish thickness measurement by laser scanning microscopy and nanoindentation.•Proving the capability with the help of a numerical and experimental modal analysis. This paper covers the accurate prediction of equivalent homogenized material parameters for sheet-layered lamination stacks, which are located in rotors and stators of electric motors. Modeling the structural and dynamic behavior of these parts is a challenging task due to the special layered design of these stacks, with a huge influence of the applied joining technology, here a full-surface bonding. For the derivation of equivalent transversely isotropic material parameters, three procedures, namely the rule of mixture, an analytical and numerical homogenization, are compared eventuating in only minor differences between them. The investigations show that rather the input parameters for these averaging methods, i.e. the individual material parameters of each layer, are crucial for an accurate modeling. Experimental tests are carried out on coated sheet laminations to determine the initially unknown bonding varnish thickness with two different measurement methods, the 3D laser scanning microscopy and instrumented indentation testing, resulting in almost equivalent and reasonable values. The capability of the ab initio deduced material parameters is demonstrated by comparing an experimental and numerical modal analysis of a sample lamination stack showing an almost perfect agreement. By this, it is also revealed that a varnish Young’s modulus measured by nanoindentation is overestimated from a macroscopic point of view. Damping parameters of a bonded lamination stack are determined with the help of the experimental modal analysis showing a relatively low damped system.</abstract><cop>Berlin</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ymssp.2020.106915</doi><orcidid>https://orcid.org/0000-0002-6653-5994</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0888-3270
ispartof Mechanical systems and signal processing, 2020-11, Vol.145, p.106915, Article 106915
issn 0888-3270
1096-1216
language eng
recordid cdi_proquest_journals_2444099459
source Elsevier ScienceDirect Journals Complete
subjects Bonding
Damping
Electric motors
Equivalence
Homogenization
Isotropic material
Lamination stack
Laser scanning microscopy
Material modeling
Mathematical models
Measurement methods
Modal analysis
Modulus of elasticity
Nanoindentation
Parameters
Scanning microscopy
Stacks
title Determination of equivalent transversely isotropic material parameters for sheet-layered lamination stacks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T19%3A07%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determination%20of%20equivalent%20transversely%20isotropic%20material%20parameters%20for%20sheet-layered%20lamination%20stacks&rft.jtitle=Mechanical%20systems%20and%20signal%20processing&rft.au=Baloglu,%20Maximilian%20Volkan&rft.date=2020-11&rft.volume=145&rft.spage=106915&rft.pages=106915-&rft.artnum=106915&rft.issn=0888-3270&rft.eissn=1096-1216&rft_id=info:doi/10.1016/j.ymssp.2020.106915&rft_dat=%3Cproquest_cross%3E2444099459%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2444099459&rft_id=info:pmid/&rft_els_id=S0888327020303010&rfr_iscdi=true