Smart dampers-based vibration control – Part 1: Measurement data processing

•A new algorithm for determining an optimal data screening threshold (ODST) is presented.•ODST-based filter and combined filter are proposed.•The filters can deal well with random and impulse noise, the combined filter can be also used for white noise. Exploiting smart dampers (SmDs) based on data-d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mechanical systems and signal processing 2020-11, Vol.145, p.106958, Article 106958
Hauptverfasser: Nguyen, Sy Dzung, Choi, Seung-Bok, Kim, Joo-Hyung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 106958
container_title Mechanical systems and signal processing
container_volume 145
creator Nguyen, Sy Dzung
Choi, Seung-Bok
Kim, Joo-Hyung
description •A new algorithm for determining an optimal data screening threshold (ODST) is presented.•ODST-based filter and combined filter are proposed.•The filters can deal well with random and impulse noise, the combined filter can be also used for white noise. Exploiting smart dampers (SmDs) based on data-driven models have been seen as an appropriate approach for many applications such as vehicle suspension system. Reality has shown that the error of SmDs’ identification due to noise in the measured data (MD) sets as well as uncertainty related to the mathematical tools selected to describe control systems reduces control efficiency. To overcome this issue we are interested in finding effective solutions for online filtering noise in MD, selecting and building data-driven models of SmDs, and seeking an appropriate approach to reduce the model errors. To undertake these, we divide the research into two parts; part 1 and part 2. In this current part, we focus on the filtering of the noise by proposing two new filters. Deriving from a discovered optimal data screening threshold (ODST), the first one is an ODST-based filter (ODSTbF) for dealing with random and impulse noise (IN). The second one named combined filter (CoFilter) is a combination of the ODSTbF and the median smoother to extend the filtering capability. To determine the ODST of a data source, a new algorithm for estimating the ODST named AfODST is proposed via an offline process. Many surveys using MD coming from a magnetorheological damper (MRD) are performed to evaluate positive effects of the proposed method.
doi_str_mv 10.1016/j.ymssp.2020.106958
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2444099188</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0888327020303447</els_id><sourcerecordid>2444099188</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-8347af82d75a3f4874d5d53e3fa403256ad88b8512162925f5d30c43728cac4e3</originalsourceid><addsrcrecordid>eNp9kM1KxDAUhYMoOI4-gZuC6475bVPBhQz-wQwK6jpkkltJmf6YpAOz8x18Q5_E1rp2deFyvnvuOQidE7wgmGSX1WJfh9AtKKbjJiuEPEAzgossJZRkh2iGpZQpozk-RichVBjjguNshtYvtfYxsbruwId0owPYZOc2XkfXNolpm-jbbfL9-ZU8j0JylaxBh95DDc3IRZ10vjUQgmveT9FRqbcBzv7mHL3d3b4uH9LV0_3j8maVGsZITCXjuS4ltbnQrOQy51ZYwYCVmmNGRaatlBspxt9pQUUpLMOGs5xKow0HNkcX093B-qOHEFXV9r4ZLBXlnOOiIFIOKjapjG9D8FCqzrsh7l4RrMbeVKV-e1Njb2rqbaCuJwqGADsHXgXjoDFgnQcTlW3dv_wPK993UQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2444099188</pqid></control><display><type>article</type><title>Smart dampers-based vibration control – Part 1: Measurement data processing</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Nguyen, Sy Dzung ; Choi, Seung-Bok ; Kim, Joo-Hyung</creator><creatorcontrib>Nguyen, Sy Dzung ; Choi, Seung-Bok ; Kim, Joo-Hyung</creatorcontrib><description>•A new algorithm for determining an optimal data screening threshold (ODST) is presented.•ODST-based filter and combined filter are proposed.•The filters can deal well with random and impulse noise, the combined filter can be also used for white noise. Exploiting smart dampers (SmDs) based on data-driven models have been seen as an appropriate approach for many applications such as vehicle suspension system. Reality has shown that the error of SmDs’ identification due to noise in the measured data (MD) sets as well as uncertainty related to the mathematical tools selected to describe control systems reduces control efficiency. To overcome this issue we are interested in finding effective solutions for online filtering noise in MD, selecting and building data-driven models of SmDs, and seeking an appropriate approach to reduce the model errors. To undertake these, we divide the research into two parts; part 1 and part 2. In this current part, we focus on the filtering of the noise by proposing two new filters. Deriving from a discovered optimal data screening threshold (ODST), the first one is an ODST-based filter (ODSTbF) for dealing with random and impulse noise (IN). The second one named combined filter (CoFilter) is a combination of the ODSTbF and the median smoother to extend the filtering capability. To determine the ODST of a data source, a new algorithm for estimating the ODST named AfODST is proposed via an offline process. Many surveys using MD coming from a magnetorheological damper (MRD) are performed to evaluate positive effects of the proposed method.</description><identifier>ISSN: 0888-3270</identifier><identifier>EISSN: 1096-1216</identifier><identifier>DOI: 10.1016/j.ymssp.2020.106958</identifier><language>eng</language><publisher>Berlin: Elsevier Ltd</publisher><subject>Algorithms ; ANFIS-based filtering ; Dampers ; Data processing ; Data screening threshold ; Filtration ; Impulse noise filtering ; Noise ; Optima data screening threshold ; Suspension systems ; Vibration control ; Vibration isolators ; Vibration measurement</subject><ispartof>Mechanical systems and signal processing, 2020-11, Vol.145, p.106958, Article 106958</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Nov/Dec 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-8347af82d75a3f4874d5d53e3fa403256ad88b8512162925f5d30c43728cac4e3</citedby><cites>FETCH-LOGICAL-c331t-8347af82d75a3f4874d5d53e3fa403256ad88b8512162925f5d30c43728cac4e3</cites><orcidid>0000-0002-0145-7219 ; 0000-0001-6262-2815</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ymssp.2020.106958$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Nguyen, Sy Dzung</creatorcontrib><creatorcontrib>Choi, Seung-Bok</creatorcontrib><creatorcontrib>Kim, Joo-Hyung</creatorcontrib><title>Smart dampers-based vibration control – Part 1: Measurement data processing</title><title>Mechanical systems and signal processing</title><description>•A new algorithm for determining an optimal data screening threshold (ODST) is presented.•ODST-based filter and combined filter are proposed.•The filters can deal well with random and impulse noise, the combined filter can be also used for white noise. Exploiting smart dampers (SmDs) based on data-driven models have been seen as an appropriate approach for many applications such as vehicle suspension system. Reality has shown that the error of SmDs’ identification due to noise in the measured data (MD) sets as well as uncertainty related to the mathematical tools selected to describe control systems reduces control efficiency. To overcome this issue we are interested in finding effective solutions for online filtering noise in MD, selecting and building data-driven models of SmDs, and seeking an appropriate approach to reduce the model errors. To undertake these, we divide the research into two parts; part 1 and part 2. In this current part, we focus on the filtering of the noise by proposing two new filters. Deriving from a discovered optimal data screening threshold (ODST), the first one is an ODST-based filter (ODSTbF) for dealing with random and impulse noise (IN). The second one named combined filter (CoFilter) is a combination of the ODSTbF and the median smoother to extend the filtering capability. To determine the ODST of a data source, a new algorithm for estimating the ODST named AfODST is proposed via an offline process. Many surveys using MD coming from a magnetorheological damper (MRD) are performed to evaluate positive effects of the proposed method.</description><subject>Algorithms</subject><subject>ANFIS-based filtering</subject><subject>Dampers</subject><subject>Data processing</subject><subject>Data screening threshold</subject><subject>Filtration</subject><subject>Impulse noise filtering</subject><subject>Noise</subject><subject>Optima data screening threshold</subject><subject>Suspension systems</subject><subject>Vibration control</subject><subject>Vibration isolators</subject><subject>Vibration measurement</subject><issn>0888-3270</issn><issn>1096-1216</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KxDAUhYMoOI4-gZuC6475bVPBhQz-wQwK6jpkkltJmf6YpAOz8x18Q5_E1rp2deFyvnvuOQidE7wgmGSX1WJfh9AtKKbjJiuEPEAzgossJZRkh2iGpZQpozk-RichVBjjguNshtYvtfYxsbruwId0owPYZOc2XkfXNolpm-jbbfL9-ZU8j0JylaxBh95DDc3IRZ10vjUQgmveT9FRqbcBzv7mHL3d3b4uH9LV0_3j8maVGsZITCXjuS4ltbnQrOQy51ZYwYCVmmNGRaatlBspxt9pQUUpLMOGs5xKow0HNkcX093B-qOHEFXV9r4ZLBXlnOOiIFIOKjapjG9D8FCqzrsh7l4RrMbeVKV-e1Njb2rqbaCuJwqGADsHXgXjoDFgnQcTlW3dv_wPK993UQ</recordid><startdate>202011</startdate><enddate>202011</enddate><creator>Nguyen, Sy Dzung</creator><creator>Choi, Seung-Bok</creator><creator>Kim, Joo-Hyung</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0145-7219</orcidid><orcidid>https://orcid.org/0000-0001-6262-2815</orcidid></search><sort><creationdate>202011</creationdate><title>Smart dampers-based vibration control – Part 1: Measurement data processing</title><author>Nguyen, Sy Dzung ; Choi, Seung-Bok ; Kim, Joo-Hyung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-8347af82d75a3f4874d5d53e3fa403256ad88b8512162925f5d30c43728cac4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>ANFIS-based filtering</topic><topic>Dampers</topic><topic>Data processing</topic><topic>Data screening threshold</topic><topic>Filtration</topic><topic>Impulse noise filtering</topic><topic>Noise</topic><topic>Optima data screening threshold</topic><topic>Suspension systems</topic><topic>Vibration control</topic><topic>Vibration isolators</topic><topic>Vibration measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Sy Dzung</creatorcontrib><creatorcontrib>Choi, Seung-Bok</creatorcontrib><creatorcontrib>Kim, Joo-Hyung</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mechanical systems and signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Sy Dzung</au><au>Choi, Seung-Bok</au><au>Kim, Joo-Hyung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Smart dampers-based vibration control – Part 1: Measurement data processing</atitle><jtitle>Mechanical systems and signal processing</jtitle><date>2020-11</date><risdate>2020</risdate><volume>145</volume><spage>106958</spage><pages>106958-</pages><artnum>106958</artnum><issn>0888-3270</issn><eissn>1096-1216</eissn><abstract>•A new algorithm for determining an optimal data screening threshold (ODST) is presented.•ODST-based filter and combined filter are proposed.•The filters can deal well with random and impulse noise, the combined filter can be also used for white noise. Exploiting smart dampers (SmDs) based on data-driven models have been seen as an appropriate approach for many applications such as vehicle suspension system. Reality has shown that the error of SmDs’ identification due to noise in the measured data (MD) sets as well as uncertainty related to the mathematical tools selected to describe control systems reduces control efficiency. To overcome this issue we are interested in finding effective solutions for online filtering noise in MD, selecting and building data-driven models of SmDs, and seeking an appropriate approach to reduce the model errors. To undertake these, we divide the research into two parts; part 1 and part 2. In this current part, we focus on the filtering of the noise by proposing two new filters. Deriving from a discovered optimal data screening threshold (ODST), the first one is an ODST-based filter (ODSTbF) for dealing with random and impulse noise (IN). The second one named combined filter (CoFilter) is a combination of the ODSTbF and the median smoother to extend the filtering capability. To determine the ODST of a data source, a new algorithm for estimating the ODST named AfODST is proposed via an offline process. Many surveys using MD coming from a magnetorheological damper (MRD) are performed to evaluate positive effects of the proposed method.</abstract><cop>Berlin</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ymssp.2020.106958</doi><orcidid>https://orcid.org/0000-0002-0145-7219</orcidid><orcidid>https://orcid.org/0000-0001-6262-2815</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0888-3270
ispartof Mechanical systems and signal processing, 2020-11, Vol.145, p.106958, Article 106958
issn 0888-3270
1096-1216
language eng
recordid cdi_proquest_journals_2444099188
source Elsevier ScienceDirect Journals Complete
subjects Algorithms
ANFIS-based filtering
Dampers
Data processing
Data screening threshold
Filtration
Impulse noise filtering
Noise
Optima data screening threshold
Suspension systems
Vibration control
Vibration isolators
Vibration measurement
title Smart dampers-based vibration control – Part 1: Measurement data processing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A43%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Smart%20dampers-based%20vibration%20control%20%E2%80%93%20Part%201:%20Measurement%20data%20processing&rft.jtitle=Mechanical%20systems%20and%20signal%20processing&rft.au=Nguyen,%20Sy%20Dzung&rft.date=2020-11&rft.volume=145&rft.spage=106958&rft.pages=106958-&rft.artnum=106958&rft.issn=0888-3270&rft.eissn=1096-1216&rft_id=info:doi/10.1016/j.ymssp.2020.106958&rft_dat=%3Cproquest_cross%3E2444099188%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2444099188&rft_id=info:pmid/&rft_els_id=S0888327020303447&rfr_iscdi=true