On the multiplicity of α as an eigenvalue of the Aα matrix of a graph in terms of the number of pendant vertices

Let G=(V(G),E(G)) be a simple undirected graph with vertex set V(G) and edge set E(G). The cyclomatic number of a connected graph G is defined as θ(G)=|E(G)|−|V(G)|+1. The Aα matrix of a graph G is defined by Nikiforov as Aα(G)=αD(G)+(1−α)A(G), where α∈[0,1], A(G) and D(G) respectively denotes the a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Linear algebra and its applications 2020-06, Vol.594, p.193-204
Hauptverfasser: Xu, Feng, Wong, Dein, Tian, Fenglei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 204
container_issue
container_start_page 193
container_title Linear algebra and its applications
container_volume 594
creator Xu, Feng
Wong, Dein
Tian, Fenglei
description Let G=(V(G),E(G)) be a simple undirected graph with vertex set V(G) and edge set E(G). The cyclomatic number of a connected graph G is defined as θ(G)=|E(G)|−|V(G)|+1. The Aα matrix of a graph G is defined by Nikiforov as Aα(G)=αD(G)+(1−α)A(G), where α∈[0,1], A(G) and D(G) respectively denotes the adjacency matrix and the diagonal matrix of the vertex degrees of G. Let mG(λ) be the multiplicity of λ as an eigenvalue of Aα(G). A cluster of G is an independent set of one or more vertices of G, each of which has the same set of neighbors. The closure of a cluster is the set of vertices of the cluster together with all the neighbors of the cluster. The degree of a cluster is the cardinality of its shared set of neighbors. A k-cluster is a cluster of degree k. The number of vertices in a k-cluster is its order. A collection of two or more k-clusters is independent if the k-clusters are pairwise disjoint and is isolated if the closures of the k-clusters are pairwise disjoint. Cardoso et al. [2] obtained a lower bound for mG(α) in terms of the number of pendant vertices. They proved that, for a simple connected graph G with p(G)>0 pendant vertices attached at q(G) quasi-pendant vertices, mG(α)≥p(G)−q(G), with equality if each internal vertex is a quasi-pendant vertex. In this article, for a graph G of order n and with t independent k-clusters of orders r1,…,rt, we prove that mG(kα)≥∑i=1tri−t, and if the k-clusters are isolated, then mG(kα)≤n−2t, which extends Cardoso's result to a more general case. Also, we give an upper bound for mG(α) in terms of p(G). It is proved that mG(α)≤p(G)+2θ(G) with θ(G) the cyclomatic number of G, the graphs G whose mG(α) attain the upper bound are characterized explicitly.
doi_str_mv 10.1016/j.laa.2020.02.025
format Article
fullrecord <record><control><sourceid>proquest_elsev</sourceid><recordid>TN_cdi_proquest_journals_2444099110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0024379520300975</els_id><sourcerecordid>2444099110</sourcerecordid><originalsourceid>FETCH-LOGICAL-e150t-aee3d02477af0227cc3fd794ad09bdb276c17800d098826eb9f2521e1ed03ce23</originalsourceid><addsrcrecordid>eNo1UMtqwzAQFKWFpmk_oDdBz05X8kM2PYXQFwRyac9CltaJjF-V5dB-Vn-k31SZtDCw7OwwOwwhtwxWDFh2X68apVYcOKyAB6RnZMFyEUcsT7NzsgDgSRSLIr0kV-NYA0AigC-I23XUH5C2U-Pt0Fht_RftK_rzTdVIVUfR7rE7qmbCmZ6l63BrlXf2c2YU3Ts1HKgNPuja8V_VTW2Jbt4G7IzqPD2i81bjeE0uKtWMePM3l-T96fFt8xJtd8-vm_U2QpaCjxRibEJqIVQFnAut48qIIlEGitKUXGSaiRwgrHnOMyyLiqecIUMDsUYeL8ndyXdw_ceEo5d1P7kuvJQ8SRIoCsYgqB5OKgxRjhadHLXFTqOxDrWXpreSgZxLlrUMJcu5ZAk8II1_AYWtcmY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2444099110</pqid></control><display><type>article</type><title>On the multiplicity of α as an eigenvalue of the Aα matrix of a graph in terms of the number of pendant vertices</title><source>ScienceDirect Journals (5 years ago - present)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Xu, Feng ; Wong, Dein ; Tian, Fenglei</creator><creatorcontrib>Xu, Feng ; Wong, Dein ; Tian, Fenglei</creatorcontrib><description>Let G=(V(G),E(G)) be a simple undirected graph with vertex set V(G) and edge set E(G). The cyclomatic number of a connected graph G is defined as θ(G)=|E(G)|−|V(G)|+1. The Aα matrix of a graph G is defined by Nikiforov as Aα(G)=αD(G)+(1−α)A(G), where α∈[0,1], A(G) and D(G) respectively denotes the adjacency matrix and the diagonal matrix of the vertex degrees of G. Let mG(λ) be the multiplicity of λ as an eigenvalue of Aα(G). A cluster of G is an independent set of one or more vertices of G, each of which has the same set of neighbors. The closure of a cluster is the set of vertices of the cluster together with all the neighbors of the cluster. The degree of a cluster is the cardinality of its shared set of neighbors. A k-cluster is a cluster of degree k. The number of vertices in a k-cluster is its order. A collection of two or more k-clusters is independent if the k-clusters are pairwise disjoint and is isolated if the closures of the k-clusters are pairwise disjoint. Cardoso et al. [2] obtained a lower bound for mG(α) in terms of the number of pendant vertices. They proved that, for a simple connected graph G with p(G)&gt;0 pendant vertices attached at q(G) quasi-pendant vertices, mG(α)≥p(G)−q(G), with equality if each internal vertex is a quasi-pendant vertex. In this article, for a graph G of order n and with t independent k-clusters of orders r1,…,rt, we prove that mG(kα)≥∑i=1tri−t, and if the k-clusters are isolated, then mG(kα)≤n−2t, which extends Cardoso's result to a more general case. Also, we give an upper bound for mG(α) in terms of p(G). It is proved that mG(α)≤p(G)+2θ(G) with θ(G) the cyclomatic number of G, the graphs G whose mG(α) attain the upper bound are characterized explicitly.</description><identifier>ISSN: 0024-3795</identifier><identifier>EISSN: 1873-1856</identifier><identifier>DOI: 10.1016/j.laa.2020.02.025</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>[formula omitted]-eigenvalues ; Apexes ; Closures ; Clusters ; Eigenvalues ; Graph theory ; Graphs ; Linear algebra ; Lower bounds ; Multiplicity of an eigenvalue ; Signless Laplacian matrix ; Upper bounds</subject><ispartof>Linear algebra and its applications, 2020-06, Vol.594, p.193-204</ispartof><rights>2020 Elsevier Inc.</rights><rights>Copyright American Elsevier Company, Inc. Jun 1, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0510-870X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.laa.2020.02.025$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Xu, Feng</creatorcontrib><creatorcontrib>Wong, Dein</creatorcontrib><creatorcontrib>Tian, Fenglei</creatorcontrib><title>On the multiplicity of α as an eigenvalue of the Aα matrix of a graph in terms of the number of pendant vertices</title><title>Linear algebra and its applications</title><description>Let G=(V(G),E(G)) be a simple undirected graph with vertex set V(G) and edge set E(G). The cyclomatic number of a connected graph G is defined as θ(G)=|E(G)|−|V(G)|+1. The Aα matrix of a graph G is defined by Nikiforov as Aα(G)=αD(G)+(1−α)A(G), where α∈[0,1], A(G) and D(G) respectively denotes the adjacency matrix and the diagonal matrix of the vertex degrees of G. Let mG(λ) be the multiplicity of λ as an eigenvalue of Aα(G). A cluster of G is an independent set of one or more vertices of G, each of which has the same set of neighbors. The closure of a cluster is the set of vertices of the cluster together with all the neighbors of the cluster. The degree of a cluster is the cardinality of its shared set of neighbors. A k-cluster is a cluster of degree k. The number of vertices in a k-cluster is its order. A collection of two or more k-clusters is independent if the k-clusters are pairwise disjoint and is isolated if the closures of the k-clusters are pairwise disjoint. Cardoso et al. [2] obtained a lower bound for mG(α) in terms of the number of pendant vertices. They proved that, for a simple connected graph G with p(G)&gt;0 pendant vertices attached at q(G) quasi-pendant vertices, mG(α)≥p(G)−q(G), with equality if each internal vertex is a quasi-pendant vertex. In this article, for a graph G of order n and with t independent k-clusters of orders r1,…,rt, we prove that mG(kα)≥∑i=1tri−t, and if the k-clusters are isolated, then mG(kα)≤n−2t, which extends Cardoso's result to a more general case. Also, we give an upper bound for mG(α) in terms of p(G). It is proved that mG(α)≤p(G)+2θ(G) with θ(G) the cyclomatic number of G, the graphs G whose mG(α) attain the upper bound are characterized explicitly.</description><subject>[formula omitted]-eigenvalues</subject><subject>Apexes</subject><subject>Closures</subject><subject>Clusters</subject><subject>Eigenvalues</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Linear algebra</subject><subject>Lower bounds</subject><subject>Multiplicity of an eigenvalue</subject><subject>Signless Laplacian matrix</subject><subject>Upper bounds</subject><issn>0024-3795</issn><issn>1873-1856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo1UMtqwzAQFKWFpmk_oDdBz05X8kM2PYXQFwRyac9CltaJjF-V5dB-Vn-k31SZtDCw7OwwOwwhtwxWDFh2X68apVYcOKyAB6RnZMFyEUcsT7NzsgDgSRSLIr0kV-NYA0AigC-I23XUH5C2U-Pt0Fht_RftK_rzTdVIVUfR7rE7qmbCmZ6l63BrlXf2c2YU3Ts1HKgNPuja8V_VTW2Jbt4G7IzqPD2i81bjeE0uKtWMePM3l-T96fFt8xJtd8-vm_U2QpaCjxRibEJqIVQFnAut48qIIlEGitKUXGSaiRwgrHnOMyyLiqecIUMDsUYeL8ndyXdw_ceEo5d1P7kuvJQ8SRIoCsYgqB5OKgxRjhadHLXFTqOxDrWXpreSgZxLlrUMJcu5ZAk8II1_AYWtcmY</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Xu, Feng</creator><creator>Wong, Dein</creator><creator>Tian, Fenglei</creator><general>Elsevier Inc</general><general>American Elsevier Company, Inc</general><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0510-870X</orcidid></search><sort><creationdate>20200601</creationdate><title>On the multiplicity of α as an eigenvalue of the Aα matrix of a graph in terms of the number of pendant vertices</title><author>Xu, Feng ; Wong, Dein ; Tian, Fenglei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e150t-aee3d02477af0227cc3fd794ad09bdb276c17800d098826eb9f2521e1ed03ce23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>[formula omitted]-eigenvalues</topic><topic>Apexes</topic><topic>Closures</topic><topic>Clusters</topic><topic>Eigenvalues</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Linear algebra</topic><topic>Lower bounds</topic><topic>Multiplicity of an eigenvalue</topic><topic>Signless Laplacian matrix</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Feng</creatorcontrib><creatorcontrib>Wong, Dein</creatorcontrib><creatorcontrib>Tian, Fenglei</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Linear algebra and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Feng</au><au>Wong, Dein</au><au>Tian, Fenglei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the multiplicity of α as an eigenvalue of the Aα matrix of a graph in terms of the number of pendant vertices</atitle><jtitle>Linear algebra and its applications</jtitle><date>2020-06-01</date><risdate>2020</risdate><volume>594</volume><spage>193</spage><epage>204</epage><pages>193-204</pages><issn>0024-3795</issn><eissn>1873-1856</eissn><abstract>Let G=(V(G),E(G)) be a simple undirected graph with vertex set V(G) and edge set E(G). The cyclomatic number of a connected graph G is defined as θ(G)=|E(G)|−|V(G)|+1. The Aα matrix of a graph G is defined by Nikiforov as Aα(G)=αD(G)+(1−α)A(G), where α∈[0,1], A(G) and D(G) respectively denotes the adjacency matrix and the diagonal matrix of the vertex degrees of G. Let mG(λ) be the multiplicity of λ as an eigenvalue of Aα(G). A cluster of G is an independent set of one or more vertices of G, each of which has the same set of neighbors. The closure of a cluster is the set of vertices of the cluster together with all the neighbors of the cluster. The degree of a cluster is the cardinality of its shared set of neighbors. A k-cluster is a cluster of degree k. The number of vertices in a k-cluster is its order. A collection of two or more k-clusters is independent if the k-clusters are pairwise disjoint and is isolated if the closures of the k-clusters are pairwise disjoint. Cardoso et al. [2] obtained a lower bound for mG(α) in terms of the number of pendant vertices. They proved that, for a simple connected graph G with p(G)&gt;0 pendant vertices attached at q(G) quasi-pendant vertices, mG(α)≥p(G)−q(G), with equality if each internal vertex is a quasi-pendant vertex. In this article, for a graph G of order n and with t independent k-clusters of orders r1,…,rt, we prove that mG(kα)≥∑i=1tri−t, and if the k-clusters are isolated, then mG(kα)≤n−2t, which extends Cardoso's result to a more general case. Also, we give an upper bound for mG(α) in terms of p(G). It is proved that mG(α)≤p(G)+2θ(G) with θ(G) the cyclomatic number of G, the graphs G whose mG(α) attain the upper bound are characterized explicitly.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.laa.2020.02.025</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0510-870X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0024-3795
ispartof Linear algebra and its applications, 2020-06, Vol.594, p.193-204
issn 0024-3795
1873-1856
language eng
recordid cdi_proquest_journals_2444099110
source ScienceDirect Journals (5 years ago - present); EZB-FREE-00999 freely available EZB journals
subjects [formula omitted]-eigenvalues
Apexes
Closures
Clusters
Eigenvalues
Graph theory
Graphs
Linear algebra
Lower bounds
Multiplicity of an eigenvalue
Signless Laplacian matrix
Upper bounds
title On the multiplicity of α as an eigenvalue of the Aα matrix of a graph in terms of the number of pendant vertices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A38%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_elsev&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20multiplicity%20of%20%CE%B1%20as%20an%20eigenvalue%20of%20the%20A%CE%B1%20matrix%20of%20a%20graph%20in%20terms%20of%20the%20number%20of%20pendant%20vertices&rft.jtitle=Linear%20algebra%20and%20its%20applications&rft.au=Xu,%20Feng&rft.date=2020-06-01&rft.volume=594&rft.spage=193&rft.epage=204&rft.pages=193-204&rft.issn=0024-3795&rft.eissn=1873-1856&rft_id=info:doi/10.1016/j.laa.2020.02.025&rft_dat=%3Cproquest_elsev%3E2444099110%3C/proquest_elsev%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2444099110&rft_id=info:pmid/&rft_els_id=S0024379520300975&rfr_iscdi=true