Hydromechanical properties of 3D printed fractures with controlled surface roughness: Insights into shear-permeability coupling processes

We explore the potentials of three-dimensional (3D) printing to explore hydromechanical processes in laboratory-scale fractures. 3D printing enables replication of designer fractures with quantified and repeatable roughness to examine the interdependencies between mechanical and hydraulic response i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of rock mechanics and mining sciences (Oxford, England : 1997) England : 1997), 2020-04, Vol.128, p.104271, Article 104271
Hauptverfasser: Ishibashi, Takuya, Fang, Yi, Elsworth, Derek, Watanabe, Noriaki, Asanuma, Hiroshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 104271
container_title International journal of rock mechanics and mining sciences (Oxford, England : 1997)
container_volume 128
creator Ishibashi, Takuya
Fang, Yi
Elsworth, Derek
Watanabe, Noriaki
Asanuma, Hiroshi
description We explore the potentials of three-dimensional (3D) printing to explore hydromechanical processes in laboratory-scale fractures. 3D printing enables replication of designer fractures with quantified and repeatable roughness to examine the interdependencies between mechanical and hydraulic response including, for example, the Barton-Bandis model. The present study successfully probes subtle variations of shear strength and dilation behavior in 3D printed fractures controlled by surface roughness. For constant materials and basic frictional characteristics, shear strength increases with increasing the standard deviation of the surface height with dilation rate principally controlled by the average amplitude of the long period wavelength of the fracture surface and insensitive the secondary (minor amplitude) roughness. Importantly, these sensitivities are manifest in the permeability response. With increasing shear displacement, the fracture permeability first decreases and then increases with oscillations resulting from step changes in fracture-fracture contact architectures. As these distinctive behaviors are consistent with those of real rock fractures, we conclude that 3D printed fractures provide a useful analog to real rock fractures when constraining slip-permeability coupling during shear slip. •Hydromechanical properties of 3D printed fractures are explored during shear slip.•Mechanical properties and dilation behavior of 3D printed fractures vary depending on their surface roughness.•3D printing offers the possibility for innovative hydraulic fracturing/shearing experiments.
doi_str_mv 10.1016/j.ijrmms.2020.104271
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2444099039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1365160919307191</els_id><sourcerecordid>2444099039</sourcerecordid><originalsourceid>FETCH-LOGICAL-a357t-a3a05a0e394cc10397f785c91b7cfdb2d8775b0e15b07a4c810b059ec8b909ee3</originalsourceid><addsrcrecordid>eNp9kM1KxDAUhYsoqKNv4CLgumPSpk3jQhD_QXCj65Cmt9OUthmTVJlH8K29Q127uQkn9zuHnCS5YHTNKCuv-rXt_TiGdUazvcQzwQ6SE1aJPOUFLw7xnpdFykoqj5PTEHpKaZmV4iT5ed413o1gOj1Zowey9W4LPloIxLUkv0fBThEa0npt4uxR_7axI8ZN0bthwJcw-1YbIN7Nm26CEK7JyxTspouBIOtI6ED7FG1H0LUdbNwhPm8HO232eQYRCGfJUauHAOd_5yr5eHx4v3tOX9-eXu5uX1OdFyLi1LTQFHLJjWE0l6IVVWEkq4VpmzprKiGKmgLDITQ3FaM1LSSYqpZUAuSr5HLxxeTPGUJUvZv9hJEq45xTKdEUt_iyZbwLwUOrsIdR-51iVO1LV71aSlf70tVSOmI3Cwb4gy8LXgVjYTLQWA8mqsbZ_w1-AUvskI8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2444099039</pqid></control><display><type>article</type><title>Hydromechanical properties of 3D printed fractures with controlled surface roughness: Insights into shear-permeability coupling processes</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Ishibashi, Takuya ; Fang, Yi ; Elsworth, Derek ; Watanabe, Noriaki ; Asanuma, Hiroshi</creator><creatorcontrib>Ishibashi, Takuya ; Fang, Yi ; Elsworth, Derek ; Watanabe, Noriaki ; Asanuma, Hiroshi</creatorcontrib><description>We explore the potentials of three-dimensional (3D) printing to explore hydromechanical processes in laboratory-scale fractures. 3D printing enables replication of designer fractures with quantified and repeatable roughness to examine the interdependencies between mechanical and hydraulic response including, for example, the Barton-Bandis model. The present study successfully probes subtle variations of shear strength and dilation behavior in 3D printed fractures controlled by surface roughness. For constant materials and basic frictional characteristics, shear strength increases with increasing the standard deviation of the surface height with dilation rate principally controlled by the average amplitude of the long period wavelength of the fracture surface and insensitive the secondary (minor amplitude) roughness. Importantly, these sensitivities are manifest in the permeability response. With increasing shear displacement, the fracture permeability first decreases and then increases with oscillations resulting from step changes in fracture-fracture contact architectures. As these distinctive behaviors are consistent with those of real rock fractures, we conclude that 3D printed fractures provide a useful analog to real rock fractures when constraining slip-permeability coupling during shear slip. •Hydromechanical properties of 3D printed fractures are explored during shear slip.•Mechanical properties and dilation behavior of 3D printed fractures vary depending on their surface roughness.•3D printing offers the possibility for innovative hydraulic fracturing/shearing experiments.</description><identifier>ISSN: 1365-1609</identifier><identifier>EISSN: 1873-4545</identifier><identifier>DOI: 10.1016/j.ijrmms.2020.104271</identifier><language>eng</language><publisher>Berlin: Elsevier Ltd</publisher><subject>3D printer/printing ; Amplitudes ; Control surfaces ; Coupling ; Dilation ; Experimental reproducibility ; Fracture permeability ; Fracture surfaces ; Oscillations ; Permeability ; Rock fracture ; Rocks ; Shear dilation ; Shear strength ; Slip ; Surface roughness ; Three dimensional printing</subject><ispartof>International journal of rock mechanics and mining sciences (Oxford, England : 1997), 2020-04, Vol.128, p.104271, Article 104271</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Apr 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a357t-a3a05a0e394cc10397f785c91b7cfdb2d8775b0e15b07a4c810b059ec8b909ee3</citedby><cites>FETCH-LOGICAL-a357t-a3a05a0e394cc10397f785c91b7cfdb2d8775b0e15b07a4c810b059ec8b909ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijrmms.2020.104271$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Ishibashi, Takuya</creatorcontrib><creatorcontrib>Fang, Yi</creatorcontrib><creatorcontrib>Elsworth, Derek</creatorcontrib><creatorcontrib>Watanabe, Noriaki</creatorcontrib><creatorcontrib>Asanuma, Hiroshi</creatorcontrib><title>Hydromechanical properties of 3D printed fractures with controlled surface roughness: Insights into shear-permeability coupling processes</title><title>International journal of rock mechanics and mining sciences (Oxford, England : 1997)</title><description>We explore the potentials of three-dimensional (3D) printing to explore hydromechanical processes in laboratory-scale fractures. 3D printing enables replication of designer fractures with quantified and repeatable roughness to examine the interdependencies between mechanical and hydraulic response including, for example, the Barton-Bandis model. The present study successfully probes subtle variations of shear strength and dilation behavior in 3D printed fractures controlled by surface roughness. For constant materials and basic frictional characteristics, shear strength increases with increasing the standard deviation of the surface height with dilation rate principally controlled by the average amplitude of the long period wavelength of the fracture surface and insensitive the secondary (minor amplitude) roughness. Importantly, these sensitivities are manifest in the permeability response. With increasing shear displacement, the fracture permeability first decreases and then increases with oscillations resulting from step changes in fracture-fracture contact architectures. As these distinctive behaviors are consistent with those of real rock fractures, we conclude that 3D printed fractures provide a useful analog to real rock fractures when constraining slip-permeability coupling during shear slip. •Hydromechanical properties of 3D printed fractures are explored during shear slip.•Mechanical properties and dilation behavior of 3D printed fractures vary depending on their surface roughness.•3D printing offers the possibility for innovative hydraulic fracturing/shearing experiments.</description><subject>3D printer/printing</subject><subject>Amplitudes</subject><subject>Control surfaces</subject><subject>Coupling</subject><subject>Dilation</subject><subject>Experimental reproducibility</subject><subject>Fracture permeability</subject><subject>Fracture surfaces</subject><subject>Oscillations</subject><subject>Permeability</subject><subject>Rock fracture</subject><subject>Rocks</subject><subject>Shear dilation</subject><subject>Shear strength</subject><subject>Slip</subject><subject>Surface roughness</subject><subject>Three dimensional printing</subject><issn>1365-1609</issn><issn>1873-4545</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KxDAUhYsoqKNv4CLgumPSpk3jQhD_QXCj65Cmt9OUthmTVJlH8K29Q127uQkn9zuHnCS5YHTNKCuv-rXt_TiGdUazvcQzwQ6SE1aJPOUFLw7xnpdFykoqj5PTEHpKaZmV4iT5ed413o1gOj1Zowey9W4LPloIxLUkv0fBThEa0npt4uxR_7axI8ZN0bthwJcw-1YbIN7Nm26CEK7JyxTspouBIOtI6ED7FG1H0LUdbNwhPm8HO232eQYRCGfJUauHAOd_5yr5eHx4v3tOX9-eXu5uX1OdFyLi1LTQFHLJjWE0l6IVVWEkq4VpmzprKiGKmgLDITQ3FaM1LSSYqpZUAuSr5HLxxeTPGUJUvZv9hJEq45xTKdEUt_iyZbwLwUOrsIdR-51iVO1LV71aSlf70tVSOmI3Cwb4gy8LXgVjYTLQWA8mqsbZ_w1-AUvskI8</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>Ishibashi, Takuya</creator><creator>Fang, Yi</creator><creator>Elsworth, Derek</creator><creator>Watanabe, Noriaki</creator><creator>Asanuma, Hiroshi</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>202004</creationdate><title>Hydromechanical properties of 3D printed fractures with controlled surface roughness: Insights into shear-permeability coupling processes</title><author>Ishibashi, Takuya ; Fang, Yi ; Elsworth, Derek ; Watanabe, Noriaki ; Asanuma, Hiroshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a357t-a3a05a0e394cc10397f785c91b7cfdb2d8775b0e15b07a4c810b059ec8b909ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>3D printer/printing</topic><topic>Amplitudes</topic><topic>Control surfaces</topic><topic>Coupling</topic><topic>Dilation</topic><topic>Experimental reproducibility</topic><topic>Fracture permeability</topic><topic>Fracture surfaces</topic><topic>Oscillations</topic><topic>Permeability</topic><topic>Rock fracture</topic><topic>Rocks</topic><topic>Shear dilation</topic><topic>Shear strength</topic><topic>Slip</topic><topic>Surface roughness</topic><topic>Three dimensional printing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ishibashi, Takuya</creatorcontrib><creatorcontrib>Fang, Yi</creatorcontrib><creatorcontrib>Elsworth, Derek</creatorcontrib><creatorcontrib>Watanabe, Noriaki</creatorcontrib><creatorcontrib>Asanuma, Hiroshi</creatorcontrib><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of rock mechanics and mining sciences (Oxford, England : 1997)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ishibashi, Takuya</au><au>Fang, Yi</au><au>Elsworth, Derek</au><au>Watanabe, Noriaki</au><au>Asanuma, Hiroshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydromechanical properties of 3D printed fractures with controlled surface roughness: Insights into shear-permeability coupling processes</atitle><jtitle>International journal of rock mechanics and mining sciences (Oxford, England : 1997)</jtitle><date>2020-04</date><risdate>2020</risdate><volume>128</volume><spage>104271</spage><pages>104271-</pages><artnum>104271</artnum><issn>1365-1609</issn><eissn>1873-4545</eissn><abstract>We explore the potentials of three-dimensional (3D) printing to explore hydromechanical processes in laboratory-scale fractures. 3D printing enables replication of designer fractures with quantified and repeatable roughness to examine the interdependencies between mechanical and hydraulic response including, for example, the Barton-Bandis model. The present study successfully probes subtle variations of shear strength and dilation behavior in 3D printed fractures controlled by surface roughness. For constant materials and basic frictional characteristics, shear strength increases with increasing the standard deviation of the surface height with dilation rate principally controlled by the average amplitude of the long period wavelength of the fracture surface and insensitive the secondary (minor amplitude) roughness. Importantly, these sensitivities are manifest in the permeability response. With increasing shear displacement, the fracture permeability first decreases and then increases with oscillations resulting from step changes in fracture-fracture contact architectures. As these distinctive behaviors are consistent with those of real rock fractures, we conclude that 3D printed fractures provide a useful analog to real rock fractures when constraining slip-permeability coupling during shear slip. •Hydromechanical properties of 3D printed fractures are explored during shear slip.•Mechanical properties and dilation behavior of 3D printed fractures vary depending on their surface roughness.•3D printing offers the possibility for innovative hydraulic fracturing/shearing experiments.</abstract><cop>Berlin</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijrmms.2020.104271</doi></addata></record>
fulltext fulltext
identifier ISSN: 1365-1609
ispartof International journal of rock mechanics and mining sciences (Oxford, England : 1997), 2020-04, Vol.128, p.104271, Article 104271
issn 1365-1609
1873-4545
language eng
recordid cdi_proquest_journals_2444099039
source ScienceDirect Journals (5 years ago - present)
subjects 3D printer/printing
Amplitudes
Control surfaces
Coupling
Dilation
Experimental reproducibility
Fracture permeability
Fracture surfaces
Oscillations
Permeability
Rock fracture
Rocks
Shear dilation
Shear strength
Slip
Surface roughness
Three dimensional printing
title Hydromechanical properties of 3D printed fractures with controlled surface roughness: Insights into shear-permeability coupling processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T18%3A48%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydromechanical%20properties%20of%203D%20printed%20fractures%20with%20controlled%20surface%20roughness:%20Insights%20into%20shear-permeability%20coupling%20processes&rft.jtitle=International%20journal%20of%20rock%20mechanics%20and%20mining%20sciences%20(Oxford,%20England%20:%201997)&rft.au=Ishibashi,%20Takuya&rft.date=2020-04&rft.volume=128&rft.spage=104271&rft.pages=104271-&rft.artnum=104271&rft.issn=1365-1609&rft.eissn=1873-4545&rft_id=info:doi/10.1016/j.ijrmms.2020.104271&rft_dat=%3Cproquest_cross%3E2444099039%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2444099039&rft_id=info:pmid/&rft_els_id=S1365160919307191&rfr_iscdi=true