On the Harmonic Extension Approach to Fractional Powers in Banach Spaces
We show that fractional powers of general sectorial operators on Banach spaces can be obtained by the harmonic extension approach. Moreover, for the corresponding second order ordinary differential equation with incomplete data describing the harmonic extension we prove existence and uniqueness of a...
Gespeichert in:
Veröffentlicht in: | Fractional calculus & applied analysis 2020-08, Vol.23 (4), p.1054-1089 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1089 |
---|---|
container_issue | 4 |
container_start_page | 1054 |
container_title | Fractional calculus & applied analysis |
container_volume | 23 |
creator | Meichsner, Jan Seifert, Christian |
description | We show that fractional powers of general sectorial operators on Banach spaces can be obtained by the harmonic extension approach. Moreover, for the corresponding second order ordinary differential equation with incomplete data describing the harmonic extension we prove existence and uniqueness of a bounded solution (i.e., of the harmonic extension). |
doi_str_mv | 10.1515/fca-2020-0055 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2444065612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2444065612</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-350674595e8c85d267f1fe7dbc68dd1dc5a863f5196b2f46bbc7fe7480bc9c613</originalsourceid><addsrcrecordid>eNqFUEFLwzAUDqLgmDt6D3jOTNIkbcHLHJsVBhPUc0jTZOvYmpp0zP17Uyt4EXyX9_He97338QFwS_CUcMLvrVaIYooRxpxfgBFJCEOUUnb5jQnCjLNrMAlhh2NlVOA8G4Fi3cBua2Ch_ME1tYaLz840oXYNnLWtd0pvYefg0ivdxaHawxd3Mj7AuoGPqunXr63SJtyAK6v2wUx--hi8Lxdv8wKt1k_P89kK6YSnHUo4FinjOTeZznhFRWqJNWlVapFVFak0V5lILCe5KKlloix1Gvcsw6XOtSDJGNwNd6O5j6MJndy5o4_GgqSMMSy4IDSy0MDS3oXgjZWtrw_KnyXBss9Lxrxkn5fs84r8h4F_UvvO-Mps_PEcwe_xP3U0YQRzFuXTQR7im2bzry75Asq_ftI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2444065612</pqid></control><display><type>article</type><title>On the Harmonic Extension Approach to Fractional Powers in Banach Spaces</title><source>SpringerLink Journals</source><source>Alma/SFX Local Collection</source><creator>Meichsner, Jan ; Seifert, Christian</creator><creatorcontrib>Meichsner, Jan ; Seifert, Christian</creatorcontrib><description>We show that fractional powers of general sectorial operators on Banach spaces can be obtained by the harmonic extension approach. Moreover, for the corresponding second order ordinary differential equation with incomplete data describing the harmonic extension we prove existence and uniqueness of a bounded solution (i.e., of the harmonic extension).</description><identifier>ISSN: 1311-0454</identifier><identifier>EISSN: 1314-2224</identifier><identifier>DOI: 10.1515/fca-2020-0055</identifier><language>eng</language><publisher>Warsaw: Versita</publisher><subject>47A60 ; Abstract Harmonic Analysis ; Analysis ; Banach spaces ; Differential equations ; Dirichlet-to-Neumann operator ; fractional powers ; Functional Analysis ; Integral Transforms ; Mathematics ; non-negative operator ; Operational Calculus ; Ordinary differential equations ; Primary 47A05 ; Research Paper ; Secondary 47D06</subject><ispartof>Fractional calculus & applied analysis, 2020-08, Vol.23 (4), p.1054-1089</ispartof><rights>Diogenes Co., Sofia 2020</rights><rights>2020 Diogenes Co., Sofia</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-350674595e8c85d267f1fe7dbc68dd1dc5a863f5196b2f46bbc7fe7480bc9c613</citedby><cites>FETCH-LOGICAL-c357t-350674595e8c85d267f1fe7dbc68dd1dc5a863f5196b2f46bbc7fe7480bc9c613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1515/fca-2020-0055$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1515/fca-2020-0055$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Meichsner, Jan</creatorcontrib><creatorcontrib>Seifert, Christian</creatorcontrib><title>On the Harmonic Extension Approach to Fractional Powers in Banach Spaces</title><title>Fractional calculus & applied analysis</title><addtitle>Fract Calc Appl Anal</addtitle><description>We show that fractional powers of general sectorial operators on Banach spaces can be obtained by the harmonic extension approach. Moreover, for the corresponding second order ordinary differential equation with incomplete data describing the harmonic extension we prove existence and uniqueness of a bounded solution (i.e., of the harmonic extension).</description><subject>47A60</subject><subject>Abstract Harmonic Analysis</subject><subject>Analysis</subject><subject>Banach spaces</subject><subject>Differential equations</subject><subject>Dirichlet-to-Neumann operator</subject><subject>fractional powers</subject><subject>Functional Analysis</subject><subject>Integral Transforms</subject><subject>Mathematics</subject><subject>non-negative operator</subject><subject>Operational Calculus</subject><subject>Ordinary differential equations</subject><subject>Primary 47A05</subject><subject>Research Paper</subject><subject>Secondary 47D06</subject><issn>1311-0454</issn><issn>1314-2224</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqFUEFLwzAUDqLgmDt6D3jOTNIkbcHLHJsVBhPUc0jTZOvYmpp0zP17Uyt4EXyX9_He97338QFwS_CUcMLvrVaIYooRxpxfgBFJCEOUUnb5jQnCjLNrMAlhh2NlVOA8G4Fi3cBua2Ch_ME1tYaLz840oXYNnLWtd0pvYefg0ivdxaHawxd3Mj7AuoGPqunXr63SJtyAK6v2wUx--hi8Lxdv8wKt1k_P89kK6YSnHUo4FinjOTeZznhFRWqJNWlVapFVFak0V5lILCe5KKlloix1Gvcsw6XOtSDJGNwNd6O5j6MJndy5o4_GgqSMMSy4IDSy0MDS3oXgjZWtrw_KnyXBss9Lxrxkn5fs84r8h4F_UvvO-Mps_PEcwe_xP3U0YQRzFuXTQR7im2bzry75Asq_ftI</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Meichsner, Jan</creator><creator>Seifert, Christian</creator><general>Versita</general><general>De Gruyter</general><general>Walter de Gruyter GmbH</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20200801</creationdate><title>On the Harmonic Extension Approach to Fractional Powers in Banach Spaces</title><author>Meichsner, Jan ; Seifert, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-350674595e8c85d267f1fe7dbc68dd1dc5a863f5196b2f46bbc7fe7480bc9c613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>47A60</topic><topic>Abstract Harmonic Analysis</topic><topic>Analysis</topic><topic>Banach spaces</topic><topic>Differential equations</topic><topic>Dirichlet-to-Neumann operator</topic><topic>fractional powers</topic><topic>Functional Analysis</topic><topic>Integral Transforms</topic><topic>Mathematics</topic><topic>non-negative operator</topic><topic>Operational Calculus</topic><topic>Ordinary differential equations</topic><topic>Primary 47A05</topic><topic>Research Paper</topic><topic>Secondary 47D06</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meichsner, Jan</creatorcontrib><creatorcontrib>Seifert, Christian</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Fractional calculus & applied analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meichsner, Jan</au><au>Seifert, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Harmonic Extension Approach to Fractional Powers in Banach Spaces</atitle><jtitle>Fractional calculus & applied analysis</jtitle><stitle>Fract Calc Appl Anal</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>23</volume><issue>4</issue><spage>1054</spage><epage>1089</epage><pages>1054-1089</pages><issn>1311-0454</issn><eissn>1314-2224</eissn><abstract>We show that fractional powers of general sectorial operators on Banach spaces can be obtained by the harmonic extension approach. Moreover, for the corresponding second order ordinary differential equation with incomplete data describing the harmonic extension we prove existence and uniqueness of a bounded solution (i.e., of the harmonic extension).</abstract><cop>Warsaw</cop><pub>Versita</pub><doi>10.1515/fca-2020-0055</doi><tpages>36</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1311-0454 |
ispartof | Fractional calculus & applied analysis, 2020-08, Vol.23 (4), p.1054-1089 |
issn | 1311-0454 1314-2224 |
language | eng |
recordid | cdi_proquest_journals_2444065612 |
source | SpringerLink Journals; Alma/SFX Local Collection |
subjects | 47A60 Abstract Harmonic Analysis Analysis Banach spaces Differential equations Dirichlet-to-Neumann operator fractional powers Functional Analysis Integral Transforms Mathematics non-negative operator Operational Calculus Ordinary differential equations Primary 47A05 Research Paper Secondary 47D06 |
title | On the Harmonic Extension Approach to Fractional Powers in Banach Spaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T07%3A26%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Harmonic%20Extension%20Approach%20to%20Fractional%20Powers%20in%20Banach%20Spaces&rft.jtitle=Fractional%20calculus%20&%20applied%20analysis&rft.au=Meichsner,%20Jan&rft.date=2020-08-01&rft.volume=23&rft.issue=4&rft.spage=1054&rft.epage=1089&rft.pages=1054-1089&rft.issn=1311-0454&rft.eissn=1314-2224&rft_id=info:doi/10.1515/fca-2020-0055&rft_dat=%3Cproquest_cross%3E2444065612%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2444065612&rft_id=info:pmid/&rfr_iscdi=true |