On the Harmonic Extension Approach to Fractional Powers in Banach Spaces

We show that fractional powers of general sectorial operators on Banach spaces can be obtained by the harmonic extension approach. Moreover, for the corresponding second order ordinary differential equation with incomplete data describing the harmonic extension we prove existence and uniqueness of a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fractional calculus & applied analysis 2020-08, Vol.23 (4), p.1054-1089
Hauptverfasser: Meichsner, Jan, Seifert, Christian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1089
container_issue 4
container_start_page 1054
container_title Fractional calculus & applied analysis
container_volume 23
creator Meichsner, Jan
Seifert, Christian
description We show that fractional powers of general sectorial operators on Banach spaces can be obtained by the harmonic extension approach. Moreover, for the corresponding second order ordinary differential equation with incomplete data describing the harmonic extension we prove existence and uniqueness of a bounded solution (i.e., of the harmonic extension).
doi_str_mv 10.1515/fca-2020-0055
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2444065612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2444065612</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-350674595e8c85d267f1fe7dbc68dd1dc5a863f5196b2f46bbc7fe7480bc9c613</originalsourceid><addsrcrecordid>eNqFUEFLwzAUDqLgmDt6D3jOTNIkbcHLHJsVBhPUc0jTZOvYmpp0zP17Uyt4EXyX9_He97338QFwS_CUcMLvrVaIYooRxpxfgBFJCEOUUnb5jQnCjLNrMAlhh2NlVOA8G4Fi3cBua2Ch_ME1tYaLz840oXYNnLWtd0pvYefg0ivdxaHawxd3Mj7AuoGPqunXr63SJtyAK6v2wUx--hi8Lxdv8wKt1k_P89kK6YSnHUo4FinjOTeZznhFRWqJNWlVapFVFak0V5lILCe5KKlloix1Gvcsw6XOtSDJGNwNd6O5j6MJndy5o4_GgqSMMSy4IDSy0MDS3oXgjZWtrw_KnyXBss9Lxrxkn5fs84r8h4F_UvvO-Mps_PEcwe_xP3U0YQRzFuXTQR7im2bzry75Asq_ftI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2444065612</pqid></control><display><type>article</type><title>On the Harmonic Extension Approach to Fractional Powers in Banach Spaces</title><source>SpringerLink Journals</source><source>Alma/SFX Local Collection</source><creator>Meichsner, Jan ; Seifert, Christian</creator><creatorcontrib>Meichsner, Jan ; Seifert, Christian</creatorcontrib><description>We show that fractional powers of general sectorial operators on Banach spaces can be obtained by the harmonic extension approach. Moreover, for the corresponding second order ordinary differential equation with incomplete data describing the harmonic extension we prove existence and uniqueness of a bounded solution (i.e., of the harmonic extension).</description><identifier>ISSN: 1311-0454</identifier><identifier>EISSN: 1314-2224</identifier><identifier>DOI: 10.1515/fca-2020-0055</identifier><language>eng</language><publisher>Warsaw: Versita</publisher><subject>47A60 ; Abstract Harmonic Analysis ; Analysis ; Banach spaces ; Differential equations ; Dirichlet-to-Neumann operator ; fractional powers ; Functional Analysis ; Integral Transforms ; Mathematics ; non-negative operator ; Operational Calculus ; Ordinary differential equations ; Primary 47A05 ; Research Paper ; Secondary 47D06</subject><ispartof>Fractional calculus &amp; applied analysis, 2020-08, Vol.23 (4), p.1054-1089</ispartof><rights>Diogenes Co., Sofia 2020</rights><rights>2020 Diogenes Co., Sofia</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-350674595e8c85d267f1fe7dbc68dd1dc5a863f5196b2f46bbc7fe7480bc9c613</citedby><cites>FETCH-LOGICAL-c357t-350674595e8c85d267f1fe7dbc68dd1dc5a863f5196b2f46bbc7fe7480bc9c613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1515/fca-2020-0055$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1515/fca-2020-0055$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Meichsner, Jan</creatorcontrib><creatorcontrib>Seifert, Christian</creatorcontrib><title>On the Harmonic Extension Approach to Fractional Powers in Banach Spaces</title><title>Fractional calculus &amp; applied analysis</title><addtitle>Fract Calc Appl Anal</addtitle><description>We show that fractional powers of general sectorial operators on Banach spaces can be obtained by the harmonic extension approach. Moreover, for the corresponding second order ordinary differential equation with incomplete data describing the harmonic extension we prove existence and uniqueness of a bounded solution (i.e., of the harmonic extension).</description><subject>47A60</subject><subject>Abstract Harmonic Analysis</subject><subject>Analysis</subject><subject>Banach spaces</subject><subject>Differential equations</subject><subject>Dirichlet-to-Neumann operator</subject><subject>fractional powers</subject><subject>Functional Analysis</subject><subject>Integral Transforms</subject><subject>Mathematics</subject><subject>non-negative operator</subject><subject>Operational Calculus</subject><subject>Ordinary differential equations</subject><subject>Primary 47A05</subject><subject>Research Paper</subject><subject>Secondary 47D06</subject><issn>1311-0454</issn><issn>1314-2224</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqFUEFLwzAUDqLgmDt6D3jOTNIkbcHLHJsVBhPUc0jTZOvYmpp0zP17Uyt4EXyX9_He97338QFwS_CUcMLvrVaIYooRxpxfgBFJCEOUUnb5jQnCjLNrMAlhh2NlVOA8G4Fi3cBua2Ch_ME1tYaLz840oXYNnLWtd0pvYefg0ivdxaHawxd3Mj7AuoGPqunXr63SJtyAK6v2wUx--hi8Lxdv8wKt1k_P89kK6YSnHUo4FinjOTeZznhFRWqJNWlVapFVFak0V5lILCe5KKlloix1Gvcsw6XOtSDJGNwNd6O5j6MJndy5o4_GgqSMMSy4IDSy0MDS3oXgjZWtrw_KnyXBss9Lxrxkn5fs84r8h4F_UvvO-Mps_PEcwe_xP3U0YQRzFuXTQR7im2bzry75Asq_ftI</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Meichsner, Jan</creator><creator>Seifert, Christian</creator><general>Versita</general><general>De Gruyter</general><general>Walter de Gruyter GmbH</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20200801</creationdate><title>On the Harmonic Extension Approach to Fractional Powers in Banach Spaces</title><author>Meichsner, Jan ; Seifert, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-350674595e8c85d267f1fe7dbc68dd1dc5a863f5196b2f46bbc7fe7480bc9c613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>47A60</topic><topic>Abstract Harmonic Analysis</topic><topic>Analysis</topic><topic>Banach spaces</topic><topic>Differential equations</topic><topic>Dirichlet-to-Neumann operator</topic><topic>fractional powers</topic><topic>Functional Analysis</topic><topic>Integral Transforms</topic><topic>Mathematics</topic><topic>non-negative operator</topic><topic>Operational Calculus</topic><topic>Ordinary differential equations</topic><topic>Primary 47A05</topic><topic>Research Paper</topic><topic>Secondary 47D06</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meichsner, Jan</creatorcontrib><creatorcontrib>Seifert, Christian</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Fractional calculus &amp; applied analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meichsner, Jan</au><au>Seifert, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Harmonic Extension Approach to Fractional Powers in Banach Spaces</atitle><jtitle>Fractional calculus &amp; applied analysis</jtitle><stitle>Fract Calc Appl Anal</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>23</volume><issue>4</issue><spage>1054</spage><epage>1089</epage><pages>1054-1089</pages><issn>1311-0454</issn><eissn>1314-2224</eissn><abstract>We show that fractional powers of general sectorial operators on Banach spaces can be obtained by the harmonic extension approach. Moreover, for the corresponding second order ordinary differential equation with incomplete data describing the harmonic extension we prove existence and uniqueness of a bounded solution (i.e., of the harmonic extension).</abstract><cop>Warsaw</cop><pub>Versita</pub><doi>10.1515/fca-2020-0055</doi><tpages>36</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1311-0454
ispartof Fractional calculus & applied analysis, 2020-08, Vol.23 (4), p.1054-1089
issn 1311-0454
1314-2224
language eng
recordid cdi_proquest_journals_2444065612
source SpringerLink Journals; Alma/SFX Local Collection
subjects 47A60
Abstract Harmonic Analysis
Analysis
Banach spaces
Differential equations
Dirichlet-to-Neumann operator
fractional powers
Functional Analysis
Integral Transforms
Mathematics
non-negative operator
Operational Calculus
Ordinary differential equations
Primary 47A05
Research Paper
Secondary 47D06
title On the Harmonic Extension Approach to Fractional Powers in Banach Spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T07%3A26%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Harmonic%20Extension%20Approach%20to%20Fractional%20Powers%20in%20Banach%20Spaces&rft.jtitle=Fractional%20calculus%20&%20applied%20analysis&rft.au=Meichsner,%20Jan&rft.date=2020-08-01&rft.volume=23&rft.issue=4&rft.spage=1054&rft.epage=1089&rft.pages=1054-1089&rft.issn=1311-0454&rft.eissn=1314-2224&rft_id=info:doi/10.1515/fca-2020-0055&rft_dat=%3Cproquest_cross%3E2444065612%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2444065612&rft_id=info:pmid/&rfr_iscdi=true