Assessment of poly(L‐lactide) as an environmentally benign CO2 capture and storage adsorbent
Carbon capture and storage (CCS) in conjunction with an increasing use of renewables provides a clean pathway to sustainable development and climate change mitigation. In selecting a low temperature CCS adsorbent, parameters such as selectivity, regeneration energy, and economicity play a crucial ro...
Gespeichert in:
Veröffentlicht in: | Journal of applied polymer science 2020-12, Vol.137 (48), p.n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 48 |
container_start_page | |
container_title | Journal of applied polymer science |
container_volume | 137 |
creator | Stelitano, Sara Lazzaroli, Victor Conte, Giuseppe Pingitore, Valentino Policicchio, Alfonso Agostino, Raffaele Giuseppe |
description | Carbon capture and storage (CCS) in conjunction with an increasing use of renewables provides a clean pathway to sustainable development and climate change mitigation. In selecting a low temperature CCS adsorbent, parameters such as selectivity, regeneration energy, and economicity play a crucial role. Poly(L‐lactide) (PLA) is one of the most promising materials in science and engineering, not only because it is a green polymer progressively replacing petrobased plastics, but also for its carbon dioxide (CO2)‐philic nature that makes it a suitable candidate for greenhouse gas capture and climate change mitigation. Literature data point to PLA as a valid CCS candidate, although no direct gaseous CO2 adsorption investigation or with mild preparation/regenerative energy was reported. In the present experimental work, a deeper investigation of the adsorption/desorption properties of PLA in presence of gaseous CO2 at room temperature was undertaken by means of a home‐made Sievert‐type apparatus. The effects of pressure (0–15 bar), morphology (commercial pellets, powder, and flakes), and regenerative energy (303 and 333 K) were investigated. PLA samples were also characterized by helium picnometry to obtain skeletal density and by XRD and SEM to obtain morphological and structural information. Results show that PLA represents a valid and ecological alternative among the materials for the capture of CO2. The PLA absorption capacity reaches 16 wt% at 15 bar and 303 K, and is closely linked to the thermal treatment, morphology, and crystalline structure of the material. |
doi_str_mv | 10.1002/app.49587 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2444009785</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2444009785</sourcerecordid><originalsourceid>FETCH-LOGICAL-g2607-c38c6f58dbbf585f67afb31dc168d0ceb0ae24ecd404db639de7350f26a731343</originalsourceid><addsrcrecordid>eNotkM1KAzEURoMoWKsL3yDgRhfT5n8yy1KsCoV2oVtDJsmUKdPJmEyV2fkIPqNPYtq6ufeD73AvHABuMZpghMhUd92EFVzmZ2CEUZFnTBB5Dkapw5ksCn4JrmLcIoQxR2IE3mcxuhh3ru2hr2Dnm-F--fv902jT19Y9QB2hbqFrP-vg2wOmm2aApWvrTQvnKwKN7vp9cImyMPY-6E3KNvqQmP4aXFS6ie7mf4_B2-Lxdf6cLVdPL_PZMtsQgfLMUGlExaUtyzR5JXJdlRRbg4W0yLgSaUeYM5YhZktBC-tyylFFhM4ppoyOwd3pbhf8x97FXm39PrTppSKMMZRMSJ6o6Yn6qhs3qC7UOx0GhZE6uFPJnTq6U7P1-hjoH_-EZUg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2444009785</pqid></control><display><type>article</type><title>Assessment of poly(L‐lactide) as an environmentally benign CO2 capture and storage adsorbent</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Stelitano, Sara ; Lazzaroli, Victor ; Conte, Giuseppe ; Pingitore, Valentino ; Policicchio, Alfonso ; Agostino, Raffaele Giuseppe</creator><creatorcontrib>Stelitano, Sara ; Lazzaroli, Victor ; Conte, Giuseppe ; Pingitore, Valentino ; Policicchio, Alfonso ; Agostino, Raffaele Giuseppe</creatorcontrib><description>Carbon capture and storage (CCS) in conjunction with an increasing use of renewables provides a clean pathway to sustainable development and climate change mitigation. In selecting a low temperature CCS adsorbent, parameters such as selectivity, regeneration energy, and economicity play a crucial role. Poly(L‐lactide) (PLA) is one of the most promising materials in science and engineering, not only because it is a green polymer progressively replacing petrobased plastics, but also for its carbon dioxide (CO2)‐philic nature that makes it a suitable candidate for greenhouse gas capture and climate change mitigation. Literature data point to PLA as a valid CCS candidate, although no direct gaseous CO2 adsorption investigation or with mild preparation/regenerative energy was reported. In the present experimental work, a deeper investigation of the adsorption/desorption properties of PLA in presence of gaseous CO2 at room temperature was undertaken by means of a home‐made Sievert‐type apparatus. The effects of pressure (0–15 bar), morphology (commercial pellets, powder, and flakes), and regenerative energy (303 and 333 K) were investigated. PLA samples were also characterized by helium picnometry to obtain skeletal density and by XRD and SEM to obtain morphological and structural information. Results show that PLA represents a valid and ecological alternative among the materials for the capture of CO2. The PLA absorption capacity reaches 16 wt% at 15 bar and 303 K, and is closely linked to the thermal treatment, morphology, and crystalline structure of the material.</description><identifier>ISSN: 0021-8995</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.49587</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Adsorbents ; Adsorption ; biomaterials ; Carbon dioxide ; Carbon sequestration ; Climate change ; Data points ; Ecological effects ; Greenhouse effect ; Greenhouse gases ; Heat treatment ; Interfaces ; Low temperature ; Materials science ; Morphology ; Polymers ; porous materials ; Pressure effects ; Regeneration ; Room temperature ; Selectivity ; surfaces ; Sustainable development</subject><ispartof>Journal of applied polymer science, 2020-12, Vol.137 (48), p.n/a</ispartof><rights>2020 Wiley Periodicals LLC</rights><rights>2020 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-7326-6278</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fapp.49587$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fapp.49587$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Stelitano, Sara</creatorcontrib><creatorcontrib>Lazzaroli, Victor</creatorcontrib><creatorcontrib>Conte, Giuseppe</creatorcontrib><creatorcontrib>Pingitore, Valentino</creatorcontrib><creatorcontrib>Policicchio, Alfonso</creatorcontrib><creatorcontrib>Agostino, Raffaele Giuseppe</creatorcontrib><title>Assessment of poly(L‐lactide) as an environmentally benign CO2 capture and storage adsorbent</title><title>Journal of applied polymer science</title><description>Carbon capture and storage (CCS) in conjunction with an increasing use of renewables provides a clean pathway to sustainable development and climate change mitigation. In selecting a low temperature CCS adsorbent, parameters such as selectivity, regeneration energy, and economicity play a crucial role. Poly(L‐lactide) (PLA) is one of the most promising materials in science and engineering, not only because it is a green polymer progressively replacing petrobased plastics, but also for its carbon dioxide (CO2)‐philic nature that makes it a suitable candidate for greenhouse gas capture and climate change mitigation. Literature data point to PLA as a valid CCS candidate, although no direct gaseous CO2 adsorption investigation or with mild preparation/regenerative energy was reported. In the present experimental work, a deeper investigation of the adsorption/desorption properties of PLA in presence of gaseous CO2 at room temperature was undertaken by means of a home‐made Sievert‐type apparatus. The effects of pressure (0–15 bar), morphology (commercial pellets, powder, and flakes), and regenerative energy (303 and 333 K) were investigated. PLA samples were also characterized by helium picnometry to obtain skeletal density and by XRD and SEM to obtain morphological and structural information. Results show that PLA represents a valid and ecological alternative among the materials for the capture of CO2. The PLA absorption capacity reaches 16 wt% at 15 bar and 303 K, and is closely linked to the thermal treatment, morphology, and crystalline structure of the material.</description><subject>Adsorbents</subject><subject>Adsorption</subject><subject>biomaterials</subject><subject>Carbon dioxide</subject><subject>Carbon sequestration</subject><subject>Climate change</subject><subject>Data points</subject><subject>Ecological effects</subject><subject>Greenhouse effect</subject><subject>Greenhouse gases</subject><subject>Heat treatment</subject><subject>Interfaces</subject><subject>Low temperature</subject><subject>Materials science</subject><subject>Morphology</subject><subject>Polymers</subject><subject>porous materials</subject><subject>Pressure effects</subject><subject>Regeneration</subject><subject>Room temperature</subject><subject>Selectivity</subject><subject>surfaces</subject><subject>Sustainable development</subject><issn>0021-8995</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNotkM1KAzEURoMoWKsL3yDgRhfT5n8yy1KsCoV2oVtDJsmUKdPJmEyV2fkIPqNPYtq6ufeD73AvHABuMZpghMhUd92EFVzmZ2CEUZFnTBB5Dkapw5ksCn4JrmLcIoQxR2IE3mcxuhh3ru2hr2Dnm-F--fv902jT19Y9QB2hbqFrP-vg2wOmm2aApWvrTQvnKwKN7vp9cImyMPY-6E3KNvqQmP4aXFS6ie7mf4_B2-Lxdf6cLVdPL_PZMtsQgfLMUGlExaUtyzR5JXJdlRRbg4W0yLgSaUeYM5YhZktBC-tyylFFhM4ppoyOwd3pbhf8x97FXm39PrTppSKMMZRMSJ6o6Yn6qhs3qC7UOx0GhZE6uFPJnTq6U7P1-hjoH_-EZUg</recordid><startdate>20201220</startdate><enddate>20201220</enddate><creator>Stelitano, Sara</creator><creator>Lazzaroli, Victor</creator><creator>Conte, Giuseppe</creator><creator>Pingitore, Valentino</creator><creator>Policicchio, Alfonso</creator><creator>Agostino, Raffaele Giuseppe</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-7326-6278</orcidid></search><sort><creationdate>20201220</creationdate><title>Assessment of poly(L‐lactide) as an environmentally benign CO2 capture and storage adsorbent</title><author>Stelitano, Sara ; Lazzaroli, Victor ; Conte, Giuseppe ; Pingitore, Valentino ; Policicchio, Alfonso ; Agostino, Raffaele Giuseppe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g2607-c38c6f58dbbf585f67afb31dc168d0ceb0ae24ecd404db639de7350f26a731343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adsorbents</topic><topic>Adsorption</topic><topic>biomaterials</topic><topic>Carbon dioxide</topic><topic>Carbon sequestration</topic><topic>Climate change</topic><topic>Data points</topic><topic>Ecological effects</topic><topic>Greenhouse effect</topic><topic>Greenhouse gases</topic><topic>Heat treatment</topic><topic>Interfaces</topic><topic>Low temperature</topic><topic>Materials science</topic><topic>Morphology</topic><topic>Polymers</topic><topic>porous materials</topic><topic>Pressure effects</topic><topic>Regeneration</topic><topic>Room temperature</topic><topic>Selectivity</topic><topic>surfaces</topic><topic>Sustainable development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stelitano, Sara</creatorcontrib><creatorcontrib>Lazzaroli, Victor</creatorcontrib><creatorcontrib>Conte, Giuseppe</creatorcontrib><creatorcontrib>Pingitore, Valentino</creatorcontrib><creatorcontrib>Policicchio, Alfonso</creatorcontrib><creatorcontrib>Agostino, Raffaele Giuseppe</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stelitano, Sara</au><au>Lazzaroli, Victor</au><au>Conte, Giuseppe</au><au>Pingitore, Valentino</au><au>Policicchio, Alfonso</au><au>Agostino, Raffaele Giuseppe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment of poly(L‐lactide) as an environmentally benign CO2 capture and storage adsorbent</atitle><jtitle>Journal of applied polymer science</jtitle><date>2020-12-20</date><risdate>2020</risdate><volume>137</volume><issue>48</issue><epage>n/a</epage><issn>0021-8995</issn><eissn>1097-4628</eissn><abstract>Carbon capture and storage (CCS) in conjunction with an increasing use of renewables provides a clean pathway to sustainable development and climate change mitigation. In selecting a low temperature CCS adsorbent, parameters such as selectivity, regeneration energy, and economicity play a crucial role. Poly(L‐lactide) (PLA) is one of the most promising materials in science and engineering, not only because it is a green polymer progressively replacing petrobased plastics, but also for its carbon dioxide (CO2)‐philic nature that makes it a suitable candidate for greenhouse gas capture and climate change mitigation. Literature data point to PLA as a valid CCS candidate, although no direct gaseous CO2 adsorption investigation or with mild preparation/regenerative energy was reported. In the present experimental work, a deeper investigation of the adsorption/desorption properties of PLA in presence of gaseous CO2 at room temperature was undertaken by means of a home‐made Sievert‐type apparatus. The effects of pressure (0–15 bar), morphology (commercial pellets, powder, and flakes), and regenerative energy (303 and 333 K) were investigated. PLA samples were also characterized by helium picnometry to obtain skeletal density and by XRD and SEM to obtain morphological and structural information. Results show that PLA represents a valid and ecological alternative among the materials for the capture of CO2. The PLA absorption capacity reaches 16 wt% at 15 bar and 303 K, and is closely linked to the thermal treatment, morphology, and crystalline structure of the material.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/app.49587</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-7326-6278</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8995 |
ispartof | Journal of applied polymer science, 2020-12, Vol.137 (48), p.n/a |
issn | 0021-8995 1097-4628 |
language | eng |
recordid | cdi_proquest_journals_2444009785 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Adsorbents Adsorption biomaterials Carbon dioxide Carbon sequestration Climate change Data points Ecological effects Greenhouse effect Greenhouse gases Heat treatment Interfaces Low temperature Materials science Morphology Polymers porous materials Pressure effects Regeneration Room temperature Selectivity surfaces Sustainable development |
title | Assessment of poly(L‐lactide) as an environmentally benign CO2 capture and storage adsorbent |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T10%3A27%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20of%20poly(L%E2%80%90lactide)%20as%20an%20environmentally%20benign%20CO2%20capture%20and%20storage%20adsorbent&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Stelitano,%20Sara&rft.date=2020-12-20&rft.volume=137&rft.issue=48&rft.epage=n/a&rft.issn=0021-8995&rft.eissn=1097-4628&rft_id=info:doi/10.1002/app.49587&rft_dat=%3Cproquest_wiley%3E2444009785%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2444009785&rft_id=info:pmid/&rfr_iscdi=true |