Continuous microfluidic encapsulation of single mesenchymal stem cells using alginate microgels as injectable fillers for bone regeneration

The encapsulation of cells in microscale hydrogels can provide a mimic of a three-dimensional (3D) microenvironment to support cell viability and functions and to protect cells from the environmental stress, which have been widely used in tissue regeneration and cell therapies. Here, a microfluidics...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta biomaterialia 2020-07, Vol.111, p.181-196
Hauptverfasser: An, Chuanfeng, Liu, Weijian, Zhang, Yang, Pang, Bo, Liu, Hui, Zhang, Yujie, Zhang, Haoyue, Zhang, Liyuan, Liao, Hongbing, Ren, Changle, Wang, Huanan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 196
container_issue
container_start_page 181
container_title Acta biomaterialia
container_volume 111
creator An, Chuanfeng
Liu, Weijian
Zhang, Yang
Pang, Bo
Liu, Hui
Zhang, Yujie
Zhang, Haoyue
Zhang, Liyuan
Liao, Hongbing
Ren, Changle
Wang, Huanan
description The encapsulation of cells in microscale hydrogels can provide a mimic of a three-dimensional (3D) microenvironment to support cell viability and functions and to protect cells from the environmental stress, which have been widely used in tissue regeneration and cell therapies. Here, a microfluidics-based approach is developed for continuous encapsulation of mesenchymal stem cells (MSCs) at the single-cell level using alginate microgels. This microfluidic technique integrated on-chip encapsulation, gelation, and de-emulsification into a one-step fabrication process, which enables scalable cell encapsulation while retaining the viability and functionality of loaded cells. Remarkably, we observed MSCs encapsulated in Ca-alginate microgels at the single-cell level showed significantly enhanced osteogenesis and accelerated mineralization of the microgels which occurred only after 7 days of induction. Furthermore, MSCs laden in alginate microgels displayed significantly enhanced bone formation compared to MSCs mixed with microgels and acellular microgels in a rat tibial ablation model. To conclude, the current microfluidic technique represents a significant step toward continuous single cell encapsulation, fabrication, and purification. These microgels can boost bone regeneration by providing a controlled osteogenic microenvironment for encapsulated MSCs and facilitate stem cell therapy in the treatment of bone defects in a minimally invasive delivery way. The biological functions and therapeutic activities of single cells laden in microgels for tissue engineering remains less investigated. Here, we reported a microfluidic-based method for continuous encapsulation of single MSCs with high viability and functionality by integrating on-chip encapsulation, gelation, and de-emulsification into a one-step fabrication process. More importantly, MSCs encapsulated in alginate microgels at the single-cell level showed significantly enhanced osteogenesis, remarkably accelerated mineralization in vitro and bone formation capacity in vivo. Therefore, this single-cell encapsulation technique can facilitate stem cell therapy for bone regeneration and be potentially used in a variety of tissue engineering applications. [Display omitted]
doi_str_mv 10.1016/j.actbio.2020.05.024
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2443908398</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1742706120302944</els_id><sourcerecordid>2443908398</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-e50492ecf8cafd18ee07e5a7b5142f8787d63ea6a5c17f7646498abb1b0d3f283</originalsourceid><addsrcrecordid>eNp9Ucuq1TAUDaJ4H_oHIgHHrTtp2uRMBDmoV7jgRMchTXeOKWlyTFrhfoM_bY69OnSUwHqx1yLkFYOWARvezq2x6-hTy4FDC30LXDwh10xJ1ch-UE_rXwreSBjYFbkpZQboFOPqObnquOiBd3BNfh1TXH3c0lbo4m1OLmx-8pZitOZctmBWnyJNjhYfTwHpgqVC3x8WE2hZcaEWQyh0u8DUhJOPZsXd6oQVMIX6OKNdzVjVzoeAuVCXMh1TRJrxhBHzn5QX5JkzoeDLx_eWfPv44evxrrn_8unz8f19Y7sDrA32IA4crVPWuIkpRJDYGzn2THBXz5fT0KEZTG-ZdHIQgzgoM45shKlzXHW35M3ue87px4Zl1XPacqyRmgtRM1R3uLDEzqqXlJLR6XP2i8kPmoG-LKBnvS-gLwto6HVdoMpeP5pv44LTP9Hfyivh3U6o7eBPj1kX62ulOPlca9JT8v9P-A1nZ5z1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2443908398</pqid></control><display><type>article</type><title>Continuous microfluidic encapsulation of single mesenchymal stem cells using alginate microgels as injectable fillers for bone regeneration</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>An, Chuanfeng ; Liu, Weijian ; Zhang, Yang ; Pang, Bo ; Liu, Hui ; Zhang, Yujie ; Zhang, Haoyue ; Zhang, Liyuan ; Liao, Hongbing ; Ren, Changle ; Wang, Huanan</creator><creatorcontrib>An, Chuanfeng ; Liu, Weijian ; Zhang, Yang ; Pang, Bo ; Liu, Hui ; Zhang, Yujie ; Zhang, Haoyue ; Zhang, Liyuan ; Liao, Hongbing ; Ren, Changle ; Wang, Huanan</creatorcontrib><description>The encapsulation of cells in microscale hydrogels can provide a mimic of a three-dimensional (3D) microenvironment to support cell viability and functions and to protect cells from the environmental stress, which have been widely used in tissue regeneration and cell therapies. Here, a microfluidics-based approach is developed for continuous encapsulation of mesenchymal stem cells (MSCs) at the single-cell level using alginate microgels. This microfluidic technique integrated on-chip encapsulation, gelation, and de-emulsification into a one-step fabrication process, which enables scalable cell encapsulation while retaining the viability and functionality of loaded cells. Remarkably, we observed MSCs encapsulated in Ca-alginate microgels at the single-cell level showed significantly enhanced osteogenesis and accelerated mineralization of the microgels which occurred only after 7 days of induction. Furthermore, MSCs laden in alginate microgels displayed significantly enhanced bone formation compared to MSCs mixed with microgels and acellular microgels in a rat tibial ablation model. To conclude, the current microfluidic technique represents a significant step toward continuous single cell encapsulation, fabrication, and purification. These microgels can boost bone regeneration by providing a controlled osteogenic microenvironment for encapsulated MSCs and facilitate stem cell therapy in the treatment of bone defects in a minimally invasive delivery way. The biological functions and therapeutic activities of single cells laden in microgels for tissue engineering remains less investigated. Here, we reported a microfluidic-based method for continuous encapsulation of single MSCs with high viability and functionality by integrating on-chip encapsulation, gelation, and de-emulsification into a one-step fabrication process. More importantly, MSCs encapsulated in alginate microgels at the single-cell level showed significantly enhanced osteogenesis, remarkably accelerated mineralization in vitro and bone formation capacity in vivo. Therefore, this single-cell encapsulation technique can facilitate stem cell therapy for bone regeneration and be potentially used in a variety of tissue engineering applications. [Display omitted]</description><identifier>ISSN: 1742-7061</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2020.05.024</identifier><identifier>PMID: 32450230</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Ablation ; Alginates ; Alginic acid ; Animals ; Biomedical materials ; Bone growth ; Bone Regeneration ; Cell therapy ; Cell viability ; Emulsification ; Encapsulation ; Environmental stress ; Fabrication ; Fillers ; Gelation ; Hydrogels ; Mesenchymal Stem Cells ; Microfluidics ; Microgels ; Mineralization ; MSCs ; Osteogenesis ; Rats ; Regeneration ; Regeneration (physiology) ; Single-cell encapsulation ; Stem cell transplantation ; Stem cells ; Tissue Engineering</subject><ispartof>Acta biomaterialia, 2020-07, Vol.111, p.181-196</ispartof><rights>2020</rights><rights>Copyright © 2020. Published by Elsevier Ltd.</rights><rights>Copyright Elsevier BV Jul 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-e50492ecf8cafd18ee07e5a7b5142f8787d63ea6a5c17f7646498abb1b0d3f283</citedby><cites>FETCH-LOGICAL-c390t-e50492ecf8cafd18ee07e5a7b5142f8787d63ea6a5c17f7646498abb1b0d3f283</cites><orcidid>0000-0002-7864-1452</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actbio.2020.05.024$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32450230$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>An, Chuanfeng</creatorcontrib><creatorcontrib>Liu, Weijian</creatorcontrib><creatorcontrib>Zhang, Yang</creatorcontrib><creatorcontrib>Pang, Bo</creatorcontrib><creatorcontrib>Liu, Hui</creatorcontrib><creatorcontrib>Zhang, Yujie</creatorcontrib><creatorcontrib>Zhang, Haoyue</creatorcontrib><creatorcontrib>Zhang, Liyuan</creatorcontrib><creatorcontrib>Liao, Hongbing</creatorcontrib><creatorcontrib>Ren, Changle</creatorcontrib><creatorcontrib>Wang, Huanan</creatorcontrib><title>Continuous microfluidic encapsulation of single mesenchymal stem cells using alginate microgels as injectable fillers for bone regeneration</title><title>Acta biomaterialia</title><addtitle>Acta Biomater</addtitle><description>The encapsulation of cells in microscale hydrogels can provide a mimic of a three-dimensional (3D) microenvironment to support cell viability and functions and to protect cells from the environmental stress, which have been widely used in tissue regeneration and cell therapies. Here, a microfluidics-based approach is developed for continuous encapsulation of mesenchymal stem cells (MSCs) at the single-cell level using alginate microgels. This microfluidic technique integrated on-chip encapsulation, gelation, and de-emulsification into a one-step fabrication process, which enables scalable cell encapsulation while retaining the viability and functionality of loaded cells. Remarkably, we observed MSCs encapsulated in Ca-alginate microgels at the single-cell level showed significantly enhanced osteogenesis and accelerated mineralization of the microgels which occurred only after 7 days of induction. Furthermore, MSCs laden in alginate microgels displayed significantly enhanced bone formation compared to MSCs mixed with microgels and acellular microgels in a rat tibial ablation model. To conclude, the current microfluidic technique represents a significant step toward continuous single cell encapsulation, fabrication, and purification. These microgels can boost bone regeneration by providing a controlled osteogenic microenvironment for encapsulated MSCs and facilitate stem cell therapy in the treatment of bone defects in a minimally invasive delivery way. The biological functions and therapeutic activities of single cells laden in microgels for tissue engineering remains less investigated. Here, we reported a microfluidic-based method for continuous encapsulation of single MSCs with high viability and functionality by integrating on-chip encapsulation, gelation, and de-emulsification into a one-step fabrication process. More importantly, MSCs encapsulated in alginate microgels at the single-cell level showed significantly enhanced osteogenesis, remarkably accelerated mineralization in vitro and bone formation capacity in vivo. Therefore, this single-cell encapsulation technique can facilitate stem cell therapy for bone regeneration and be potentially used in a variety of tissue engineering applications. [Display omitted]</description><subject>Ablation</subject><subject>Alginates</subject><subject>Alginic acid</subject><subject>Animals</subject><subject>Biomedical materials</subject><subject>Bone growth</subject><subject>Bone Regeneration</subject><subject>Cell therapy</subject><subject>Cell viability</subject><subject>Emulsification</subject><subject>Encapsulation</subject><subject>Environmental stress</subject><subject>Fabrication</subject><subject>Fillers</subject><subject>Gelation</subject><subject>Hydrogels</subject><subject>Mesenchymal Stem Cells</subject><subject>Microfluidics</subject><subject>Microgels</subject><subject>Mineralization</subject><subject>MSCs</subject><subject>Osteogenesis</subject><subject>Rats</subject><subject>Regeneration</subject><subject>Regeneration (physiology)</subject><subject>Single-cell encapsulation</subject><subject>Stem cell transplantation</subject><subject>Stem cells</subject><subject>Tissue Engineering</subject><issn>1742-7061</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9Ucuq1TAUDaJ4H_oHIgHHrTtp2uRMBDmoV7jgRMchTXeOKWlyTFrhfoM_bY69OnSUwHqx1yLkFYOWARvezq2x6-hTy4FDC30LXDwh10xJ1ch-UE_rXwreSBjYFbkpZQboFOPqObnquOiBd3BNfh1TXH3c0lbo4m1OLmx-8pZitOZctmBWnyJNjhYfTwHpgqVC3x8WE2hZcaEWQyh0u8DUhJOPZsXd6oQVMIX6OKNdzVjVzoeAuVCXMh1TRJrxhBHzn5QX5JkzoeDLx_eWfPv44evxrrn_8unz8f19Y7sDrA32IA4crVPWuIkpRJDYGzn2THBXz5fT0KEZTG-ZdHIQgzgoM45shKlzXHW35M3ue87px4Zl1XPacqyRmgtRM1R3uLDEzqqXlJLR6XP2i8kPmoG-LKBnvS-gLwto6HVdoMpeP5pv44LTP9Hfyivh3U6o7eBPj1kX62ulOPlca9JT8v9P-A1nZ5z1</recordid><startdate>20200715</startdate><enddate>20200715</enddate><creator>An, Chuanfeng</creator><creator>Liu, Weijian</creator><creator>Zhang, Yang</creator><creator>Pang, Bo</creator><creator>Liu, Hui</creator><creator>Zhang, Yujie</creator><creator>Zhang, Haoyue</creator><creator>Zhang, Liyuan</creator><creator>Liao, Hongbing</creator><creator>Ren, Changle</creator><creator>Wang, Huanan</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-7864-1452</orcidid></search><sort><creationdate>20200715</creationdate><title>Continuous microfluidic encapsulation of single mesenchymal stem cells using alginate microgels as injectable fillers for bone regeneration</title><author>An, Chuanfeng ; Liu, Weijian ; Zhang, Yang ; Pang, Bo ; Liu, Hui ; Zhang, Yujie ; Zhang, Haoyue ; Zhang, Liyuan ; Liao, Hongbing ; Ren, Changle ; Wang, Huanan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-e50492ecf8cafd18ee07e5a7b5142f8787d63ea6a5c17f7646498abb1b0d3f283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Ablation</topic><topic>Alginates</topic><topic>Alginic acid</topic><topic>Animals</topic><topic>Biomedical materials</topic><topic>Bone growth</topic><topic>Bone Regeneration</topic><topic>Cell therapy</topic><topic>Cell viability</topic><topic>Emulsification</topic><topic>Encapsulation</topic><topic>Environmental stress</topic><topic>Fabrication</topic><topic>Fillers</topic><topic>Gelation</topic><topic>Hydrogels</topic><topic>Mesenchymal Stem Cells</topic><topic>Microfluidics</topic><topic>Microgels</topic><topic>Mineralization</topic><topic>MSCs</topic><topic>Osteogenesis</topic><topic>Rats</topic><topic>Regeneration</topic><topic>Regeneration (physiology)</topic><topic>Single-cell encapsulation</topic><topic>Stem cell transplantation</topic><topic>Stem cells</topic><topic>Tissue Engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>An, Chuanfeng</creatorcontrib><creatorcontrib>Liu, Weijian</creatorcontrib><creatorcontrib>Zhang, Yang</creatorcontrib><creatorcontrib>Pang, Bo</creatorcontrib><creatorcontrib>Liu, Hui</creatorcontrib><creatorcontrib>Zhang, Yujie</creatorcontrib><creatorcontrib>Zhang, Haoyue</creatorcontrib><creatorcontrib>Zhang, Liyuan</creatorcontrib><creatorcontrib>Liao, Hongbing</creatorcontrib><creatorcontrib>Ren, Changle</creatorcontrib><creatorcontrib>Wang, Huanan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>An, Chuanfeng</au><au>Liu, Weijian</au><au>Zhang, Yang</au><au>Pang, Bo</au><au>Liu, Hui</au><au>Zhang, Yujie</au><au>Zhang, Haoyue</au><au>Zhang, Liyuan</au><au>Liao, Hongbing</au><au>Ren, Changle</au><au>Wang, Huanan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Continuous microfluidic encapsulation of single mesenchymal stem cells using alginate microgels as injectable fillers for bone regeneration</atitle><jtitle>Acta biomaterialia</jtitle><addtitle>Acta Biomater</addtitle><date>2020-07-15</date><risdate>2020</risdate><volume>111</volume><spage>181</spage><epage>196</epage><pages>181-196</pages><issn>1742-7061</issn><eissn>1878-7568</eissn><abstract>The encapsulation of cells in microscale hydrogels can provide a mimic of a three-dimensional (3D) microenvironment to support cell viability and functions and to protect cells from the environmental stress, which have been widely used in tissue regeneration and cell therapies. Here, a microfluidics-based approach is developed for continuous encapsulation of mesenchymal stem cells (MSCs) at the single-cell level using alginate microgels. This microfluidic technique integrated on-chip encapsulation, gelation, and de-emulsification into a one-step fabrication process, which enables scalable cell encapsulation while retaining the viability and functionality of loaded cells. Remarkably, we observed MSCs encapsulated in Ca-alginate microgels at the single-cell level showed significantly enhanced osteogenesis and accelerated mineralization of the microgels which occurred only after 7 days of induction. Furthermore, MSCs laden in alginate microgels displayed significantly enhanced bone formation compared to MSCs mixed with microgels and acellular microgels in a rat tibial ablation model. To conclude, the current microfluidic technique represents a significant step toward continuous single cell encapsulation, fabrication, and purification. These microgels can boost bone regeneration by providing a controlled osteogenic microenvironment for encapsulated MSCs and facilitate stem cell therapy in the treatment of bone defects in a minimally invasive delivery way. The biological functions and therapeutic activities of single cells laden in microgels for tissue engineering remains less investigated. Here, we reported a microfluidic-based method for continuous encapsulation of single MSCs with high viability and functionality by integrating on-chip encapsulation, gelation, and de-emulsification into a one-step fabrication process. More importantly, MSCs encapsulated in alginate microgels at the single-cell level showed significantly enhanced osteogenesis, remarkably accelerated mineralization in vitro and bone formation capacity in vivo. Therefore, this single-cell encapsulation technique can facilitate stem cell therapy for bone regeneration and be potentially used in a variety of tissue engineering applications. [Display omitted]</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>32450230</pmid><doi>10.1016/j.actbio.2020.05.024</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-7864-1452</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1742-7061
ispartof Acta biomaterialia, 2020-07, Vol.111, p.181-196
issn 1742-7061
1878-7568
language eng
recordid cdi_proquest_journals_2443908398
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Ablation
Alginates
Alginic acid
Animals
Biomedical materials
Bone growth
Bone Regeneration
Cell therapy
Cell viability
Emulsification
Encapsulation
Environmental stress
Fabrication
Fillers
Gelation
Hydrogels
Mesenchymal Stem Cells
Microfluidics
Microgels
Mineralization
MSCs
Osteogenesis
Rats
Regeneration
Regeneration (physiology)
Single-cell encapsulation
Stem cell transplantation
Stem cells
Tissue Engineering
title Continuous microfluidic encapsulation of single mesenchymal stem cells using alginate microgels as injectable fillers for bone regeneration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T05%3A07%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Continuous%20microfluidic%20encapsulation%20of%20single%20mesenchymal%20stem%20cells%20using%20alginate%20microgels%20as%20injectable%20fillers%20for%20bone%20regeneration&rft.jtitle=Acta%20biomaterialia&rft.au=An,%20Chuanfeng&rft.date=2020-07-15&rft.volume=111&rft.spage=181&rft.epage=196&rft.pages=181-196&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2020.05.024&rft_dat=%3Cproquest_cross%3E2443908398%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2443908398&rft_id=info:pmid/32450230&rft_els_id=S1742706120302944&rfr_iscdi=true