Using the XGBoost algorithm to classify neck and leg activity sensor data using on-farm health recordings for locomotor-associated diseases

•Locomotor-associated diseases could be successfully classified (86% AUROC & 81% F-Measure).•Computational load could be reduced by approximately two-thirds using feature pre-selection.•Different feature types and window-lengths were considered.•XGBoost is a capable and easy to use method for cl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers and electronics in agriculture 2020-06, Vol.173, p.105404, Article 105404
Hauptverfasser: Gertz, M., Große-Butenuth, K., Junge, W., Maassen-Francke, B., Renner, C., Sparenberg, H., Krieter, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!