Using the XGBoost algorithm to classify neck and leg activity sensor data using on-farm health recordings for locomotor-associated diseases
•Locomotor-associated diseases could be successfully classified (86% AUROC & 81% F-Measure).•Computational load could be reduced by approximately two-thirds using feature pre-selection.•Different feature types and window-lengths were considered.•XGBoost is a capable and easy to use method for cl...
Gespeichert in:
Veröffentlicht in: | Computers and electronics in agriculture 2020-06, Vol.173, p.105404, Article 105404 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!