Gradient porous PNIPAM-based hydrogel actuators with rapid response and flexibly controllable deformation

Smart hydrogels play a vital role in fundamental research and industrial applications in the fields of biosensors, flexible devices and intelligent human-machine technologies; however, developing a simple, low-cost and large-scale method to obtain hydrogel actuators with rapid response and robust an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2020-09, Vol.8 (35), p.1292-1299
Hauptverfasser: Liu, Jian, Xu, Weizhong, Kuang, Zhongwen, Dong, Pengli, Yao, Youxing, Wu, Huaping, Liu, Aiping, Ye, Fangmin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1299
container_issue 35
container_start_page 1292
container_title Journal of materials chemistry. C, Materials for optical and electronic devices
container_volume 8
creator Liu, Jian
Xu, Weizhong
Kuang, Zhongwen
Dong, Pengli
Yao, Youxing
Wu, Huaping
Liu, Aiping
Ye, Fangmin
description Smart hydrogels play a vital role in fundamental research and industrial applications in the fields of biosensors, flexible devices and intelligent human-machine technologies; however, developing a simple, low-cost and large-scale method to obtain hydrogel actuators with rapid response and robust and steadily controllable motion remains a big challenge. In this work, a temperature-responsive, gradient structured hydrogel with quick bending and adjustable actuation was fabricated by the copolymerization of the N -isopropylacrylamide (NIPAM) monomer with dispersed montmorillonite (MMT) via a facile precipitation method. The introduction of MMT with good thermal conductivity made the volume phase transition of the PNIPAM-based hydrogel occur earlier, and the deformation degree and bending direction could be adjusted by changing the MMT content. The representative composite hydrogel with 0.2 g MMT in the precursor presented bidirectional bending characteristics with a bending amplitude of about 289° and an average bending speed of about 36.0° s −1 , while the composite hydrogel with 0.3 g MMT in the precursor only possessed a unidirectional bending ability with a bending amplitude of about −259° and a bending velocity of about −28.8° s −1 due to the great difference in the shrinking capacity between the top and bottom sides of the composite hydrogel. In addition, flexibly controllable deformation was specially realized by a well-designed patterned hydrogel with a local component and a thickness difference. Our work provides a practical method for the ingenious design of a hydrogel for further development of programmable and versatile hydrogel-based smart actuators and soft robots. Gradient PNIPAM-based intelligent hydrogels with bidirectional bending properties can realize flexibly controllable deformation and activity as soft actuators.
doi_str_mv 10.1039/d0tc00139b
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2443804159</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2443804159</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-a34b3f852aedf31f7deaa7c219f05ca0138c465fb0ec5ded0f5df895ba48c143</originalsourceid><addsrcrecordid>eNp9kL1PwzAQxS0EElXpwo5kxIYUsGM7TcZSoFQq0KF7dPEHTZXGwXYE_e8xFJWNW95J76c7vYfQOSU3lLDiVpEgCaGsqI7QICWCJGPB-PFhT7NTNPJ-Q-LkNMuzYoDqmQNV6zbgzjrbe7x8mS8nz0kFXiu83iln33SDQYYegnUef9RhjR10tcJO-862XmNoFTaN_qyrZoelbYOzTQNVo7HSxrothNq2Z-jEQOP16FeHaPX4sJo-JYvX2Xw6WSSScR4SYLxiJhcpaGUYNWOlAcYypYUhQkKMl0ueCVMRLYXSihihTF6ICnguKWdDdLU_2zn73msfyo3tXRs_linnLCeciiJS13tKOuu906bsXL0FtyspKb_LLO_JavpT5l2EL_aw8_LA_ZUd_cv__LKLQb4AzYd-cQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2443804159</pqid></control><display><type>article</type><title>Gradient porous PNIPAM-based hydrogel actuators with rapid response and flexibly controllable deformation</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Liu, Jian ; Xu, Weizhong ; Kuang, Zhongwen ; Dong, Pengli ; Yao, Youxing ; Wu, Huaping ; Liu, Aiping ; Ye, Fangmin</creator><creatorcontrib>Liu, Jian ; Xu, Weizhong ; Kuang, Zhongwen ; Dong, Pengli ; Yao, Youxing ; Wu, Huaping ; Liu, Aiping ; Ye, Fangmin</creatorcontrib><description>Smart hydrogels play a vital role in fundamental research and industrial applications in the fields of biosensors, flexible devices and intelligent human-machine technologies; however, developing a simple, low-cost and large-scale method to obtain hydrogel actuators with rapid response and robust and steadily controllable motion remains a big challenge. In this work, a temperature-responsive, gradient structured hydrogel with quick bending and adjustable actuation was fabricated by the copolymerization of the N -isopropylacrylamide (NIPAM) monomer with dispersed montmorillonite (MMT) via a facile precipitation method. The introduction of MMT with good thermal conductivity made the volume phase transition of the PNIPAM-based hydrogel occur earlier, and the deformation degree and bending direction could be adjusted by changing the MMT content. The representative composite hydrogel with 0.2 g MMT in the precursor presented bidirectional bending characteristics with a bending amplitude of about 289° and an average bending speed of about 36.0° s −1 , while the composite hydrogel with 0.3 g MMT in the precursor only possessed a unidirectional bending ability with a bending amplitude of about −259° and a bending velocity of about −28.8° s −1 due to the great difference in the shrinking capacity between the top and bottom sides of the composite hydrogel. In addition, flexibly controllable deformation was specially realized by a well-designed patterned hydrogel with a local component and a thickness difference. Our work provides a practical method for the ingenious design of a hydrogel for further development of programmable and versatile hydrogel-based smart actuators and soft robots. Gradient PNIPAM-based intelligent hydrogels with bidirectional bending properties can realize flexibly controllable deformation and activity as soft actuators.</description><identifier>ISSN: 2050-7526</identifier><identifier>EISSN: 2050-7534</identifier><identifier>DOI: 10.1039/d0tc00139b</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Actuation ; Actuators ; Amplitudes ; Bending ; Biosensors ; Copolymerization ; Deformation ; Hydrogels ; Industrial applications ; Isopropylacrylamide ; Montmorillonite ; Phase transitions ; Precursors ; Robust control ; Thermal conductivity</subject><ispartof>Journal of materials chemistry. C, Materials for optical and electronic devices, 2020-09, Vol.8 (35), p.1292-1299</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-a34b3f852aedf31f7deaa7c219f05ca0138c465fb0ec5ded0f5df895ba48c143</citedby><cites>FETCH-LOGICAL-c344t-a34b3f852aedf31f7deaa7c219f05ca0138c465fb0ec5ded0f5df895ba48c143</cites><orcidid>0000-0002-2338-062X ; 0000-0003-4505-7062</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Liu, Jian</creatorcontrib><creatorcontrib>Xu, Weizhong</creatorcontrib><creatorcontrib>Kuang, Zhongwen</creatorcontrib><creatorcontrib>Dong, Pengli</creatorcontrib><creatorcontrib>Yao, Youxing</creatorcontrib><creatorcontrib>Wu, Huaping</creatorcontrib><creatorcontrib>Liu, Aiping</creatorcontrib><creatorcontrib>Ye, Fangmin</creatorcontrib><title>Gradient porous PNIPAM-based hydrogel actuators with rapid response and flexibly controllable deformation</title><title>Journal of materials chemistry. C, Materials for optical and electronic devices</title><description>Smart hydrogels play a vital role in fundamental research and industrial applications in the fields of biosensors, flexible devices and intelligent human-machine technologies; however, developing a simple, low-cost and large-scale method to obtain hydrogel actuators with rapid response and robust and steadily controllable motion remains a big challenge. In this work, a temperature-responsive, gradient structured hydrogel with quick bending and adjustable actuation was fabricated by the copolymerization of the N -isopropylacrylamide (NIPAM) monomer with dispersed montmorillonite (MMT) via a facile precipitation method. The introduction of MMT with good thermal conductivity made the volume phase transition of the PNIPAM-based hydrogel occur earlier, and the deformation degree and bending direction could be adjusted by changing the MMT content. The representative composite hydrogel with 0.2 g MMT in the precursor presented bidirectional bending characteristics with a bending amplitude of about 289° and an average bending speed of about 36.0° s −1 , while the composite hydrogel with 0.3 g MMT in the precursor only possessed a unidirectional bending ability with a bending amplitude of about −259° and a bending velocity of about −28.8° s −1 due to the great difference in the shrinking capacity between the top and bottom sides of the composite hydrogel. In addition, flexibly controllable deformation was specially realized by a well-designed patterned hydrogel with a local component and a thickness difference. Our work provides a practical method for the ingenious design of a hydrogel for further development of programmable and versatile hydrogel-based smart actuators and soft robots. Gradient PNIPAM-based intelligent hydrogels with bidirectional bending properties can realize flexibly controllable deformation and activity as soft actuators.</description><subject>Actuation</subject><subject>Actuators</subject><subject>Amplitudes</subject><subject>Bending</subject><subject>Biosensors</subject><subject>Copolymerization</subject><subject>Deformation</subject><subject>Hydrogels</subject><subject>Industrial applications</subject><subject>Isopropylacrylamide</subject><subject>Montmorillonite</subject><subject>Phase transitions</subject><subject>Precursors</subject><subject>Robust control</subject><subject>Thermal conductivity</subject><issn>2050-7526</issn><issn>2050-7534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kL1PwzAQxS0EElXpwo5kxIYUsGM7TcZSoFQq0KF7dPEHTZXGwXYE_e8xFJWNW95J76c7vYfQOSU3lLDiVpEgCaGsqI7QICWCJGPB-PFhT7NTNPJ-Q-LkNMuzYoDqmQNV6zbgzjrbe7x8mS8nz0kFXiu83iln33SDQYYegnUef9RhjR10tcJO-862XmNoFTaN_qyrZoelbYOzTQNVo7HSxrothNq2Z-jEQOP16FeHaPX4sJo-JYvX2Xw6WSSScR4SYLxiJhcpaGUYNWOlAcYypYUhQkKMl0ueCVMRLYXSihihTF6ICnguKWdDdLU_2zn73msfyo3tXRs_linnLCeciiJS13tKOuu906bsXL0FtyspKb_LLO_JavpT5l2EL_aw8_LA_ZUd_cv__LKLQb4AzYd-cQ</recordid><startdate>20200921</startdate><enddate>20200921</enddate><creator>Liu, Jian</creator><creator>Xu, Weizhong</creator><creator>Kuang, Zhongwen</creator><creator>Dong, Pengli</creator><creator>Yao, Youxing</creator><creator>Wu, Huaping</creator><creator>Liu, Aiping</creator><creator>Ye, Fangmin</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2338-062X</orcidid><orcidid>https://orcid.org/0000-0003-4505-7062</orcidid></search><sort><creationdate>20200921</creationdate><title>Gradient porous PNIPAM-based hydrogel actuators with rapid response and flexibly controllable deformation</title><author>Liu, Jian ; Xu, Weizhong ; Kuang, Zhongwen ; Dong, Pengli ; Yao, Youxing ; Wu, Huaping ; Liu, Aiping ; Ye, Fangmin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-a34b3f852aedf31f7deaa7c219f05ca0138c465fb0ec5ded0f5df895ba48c143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Actuation</topic><topic>Actuators</topic><topic>Amplitudes</topic><topic>Bending</topic><topic>Biosensors</topic><topic>Copolymerization</topic><topic>Deformation</topic><topic>Hydrogels</topic><topic>Industrial applications</topic><topic>Isopropylacrylamide</topic><topic>Montmorillonite</topic><topic>Phase transitions</topic><topic>Precursors</topic><topic>Robust control</topic><topic>Thermal conductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Jian</creatorcontrib><creatorcontrib>Xu, Weizhong</creatorcontrib><creatorcontrib>Kuang, Zhongwen</creatorcontrib><creatorcontrib>Dong, Pengli</creatorcontrib><creatorcontrib>Yao, Youxing</creatorcontrib><creatorcontrib>Wu, Huaping</creatorcontrib><creatorcontrib>Liu, Aiping</creatorcontrib><creatorcontrib>Ye, Fangmin</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Jian</au><au>Xu, Weizhong</au><au>Kuang, Zhongwen</au><au>Dong, Pengli</au><au>Yao, Youxing</au><au>Wu, Huaping</au><au>Liu, Aiping</au><au>Ye, Fangmin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gradient porous PNIPAM-based hydrogel actuators with rapid response and flexibly controllable deformation</atitle><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle><date>2020-09-21</date><risdate>2020</risdate><volume>8</volume><issue>35</issue><spage>1292</spage><epage>1299</epage><pages>1292-1299</pages><issn>2050-7526</issn><eissn>2050-7534</eissn><abstract>Smart hydrogels play a vital role in fundamental research and industrial applications in the fields of biosensors, flexible devices and intelligent human-machine technologies; however, developing a simple, low-cost and large-scale method to obtain hydrogel actuators with rapid response and robust and steadily controllable motion remains a big challenge. In this work, a temperature-responsive, gradient structured hydrogel with quick bending and adjustable actuation was fabricated by the copolymerization of the N -isopropylacrylamide (NIPAM) monomer with dispersed montmorillonite (MMT) via a facile precipitation method. The introduction of MMT with good thermal conductivity made the volume phase transition of the PNIPAM-based hydrogel occur earlier, and the deformation degree and bending direction could be adjusted by changing the MMT content. The representative composite hydrogel with 0.2 g MMT in the precursor presented bidirectional bending characteristics with a bending amplitude of about 289° and an average bending speed of about 36.0° s −1 , while the composite hydrogel with 0.3 g MMT in the precursor only possessed a unidirectional bending ability with a bending amplitude of about −259° and a bending velocity of about −28.8° s −1 due to the great difference in the shrinking capacity between the top and bottom sides of the composite hydrogel. In addition, flexibly controllable deformation was specially realized by a well-designed patterned hydrogel with a local component and a thickness difference. Our work provides a practical method for the ingenious design of a hydrogel for further development of programmable and versatile hydrogel-based smart actuators and soft robots. Gradient PNIPAM-based intelligent hydrogels with bidirectional bending properties can realize flexibly controllable deformation and activity as soft actuators.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0tc00139b</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2338-062X</orcidid><orcidid>https://orcid.org/0000-0003-4505-7062</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7526
ispartof Journal of materials chemistry. C, Materials for optical and electronic devices, 2020-09, Vol.8 (35), p.1292-1299
issn 2050-7526
2050-7534
language eng
recordid cdi_proquest_journals_2443804159
source Royal Society Of Chemistry Journals 2008-
subjects Actuation
Actuators
Amplitudes
Bending
Biosensors
Copolymerization
Deformation
Hydrogels
Industrial applications
Isopropylacrylamide
Montmorillonite
Phase transitions
Precursors
Robust control
Thermal conductivity
title Gradient porous PNIPAM-based hydrogel actuators with rapid response and flexibly controllable deformation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T22%3A25%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gradient%20porous%20PNIPAM-based%20hydrogel%20actuators%20with%20rapid%20response%20and%20flexibly%20controllable%20deformation&rft.jtitle=Journal%20of%20materials%20chemistry.%20C,%20Materials%20for%20optical%20and%20electronic%20devices&rft.au=Liu,%20Jian&rft.date=2020-09-21&rft.volume=8&rft.issue=35&rft.spage=1292&rft.epage=1299&rft.pages=1292-1299&rft.issn=2050-7526&rft.eissn=2050-7534&rft_id=info:doi/10.1039/d0tc00139b&rft_dat=%3Cproquest_cross%3E2443804159%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2443804159&rft_id=info:pmid/&rfr_iscdi=true