Molecular engineering of dendritic luminogens with thermally activated delayed fluorescence and aggregation-induced emission characteristics for efficient solution-processed non-doped OLEDs

Endowing thermally activated delayed fluorescence (TADF) emitters with aggregation-induced emission (AIE) characteristics and a fine film-forming ability is significant for realizing efficient solution-processed non-doped organic light-emitting diodes (OLEDs). Herein, a class of AIE-active TADF emit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2020-09, Vol.8 (35), p.12272-12283
Hauptverfasser: Ma, Fulong, Zhao, Xinxin, Ji, Hefang, Zhang, Dongdong, Hasrat, Kamran, Qi, Zhengjian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12283
container_issue 35
container_start_page 12272
container_title Journal of materials chemistry. C, Materials for optical and electronic devices
container_volume 8
creator Ma, Fulong
Zhao, Xinxin
Ji, Hefang
Zhang, Dongdong
Hasrat, Kamran
Qi, Zhengjian
description Endowing thermally activated delayed fluorescence (TADF) emitters with aggregation-induced emission (AIE) characteristics and a fine film-forming ability is significant for realizing efficient solution-processed non-doped organic light-emitting diodes (OLEDs). Herein, a class of AIE-active TADF emitters adopting phenyl ketone as an acceptor and 9,9-diphenyl-9,10-dihydroacridine (or 9,9-dimethyl-9,10-dihydroacridine and phenoxazine) as a donor are exploited. The suppressed intermolecular packing derived from the highly twisted molecular configuration and multiple transition channels induce improved luminescence efficiency and more efficient reverse intersystem crossing (RISC) simultaneously in the solid state. Solution-processed non-doped and doped devices with the maximum external quantum efficiencies (EQEs) of 12.1% and 17.6%, respectively, are obtained when employing the dendritic luminogens of 3PXZ-BPCTPA as the emitter, which are better than the reference non-dendritic luminogens of PXZ-BPCTPA. This work thus provides an approach for designing dendritic luminogens with TADF and AIE features as promising candidates for high-performance solution-processed OLEDs. Improving the luminescence efficiency and reverse intersystem crossing of dendritic luminogens with AIE and TADF features by employing a highly twisted molecular configuration and multiple transition channels for solution-processed OLEDs.
doi_str_mv 10.1039/d0tc02961k
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2443803790</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2443803790</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-47b222bc807d272b4dfb208f1844b72331a5990bff5dc607c7226534cfad926d3</originalsourceid><addsrcrecordid>eNp9kU1vFDEMhkcIJKrSS--VgrghTckk2fk4om2hiEW9lPMokzizKdlkiTOg_XH8t5ouKrf6Ysd67NfKW1XnDb9suBw-WF4MF0Pb_HhRnQi-4nW3kurlUy3a19UZ4j2n6Ju2b4eT6s-3FMAsQWcGcfYRIPs4s-SYhWizL96wsOx8TDNEZL992bKyhbzTIRyYNsX_0gUs0UEfKLuwpAxoIBpgOlqm5znDrItPsfbRLoYg2HlEajCz1Zl2kCaSEDKX6AznvPEQC8MUlse5fU4GEGky0sumPVW3m-srfFO9cjognP3Lp9X3T9d365t6c_v5y_rjpjZSqVKrbhJCTKbnnRWdmJR1k-C9a3qlpk5I2ejVMPDJuZU1Le9MJ0RLX2ectoNorTyt3h330iU_F8Ay3qclR5IchVKy57IbOFHvj5TJCTGDG_fZ73Q-jA0f_zo0XvG79aNDXwl-e4Qzmifuv4Pj3jpiLp5j5AMKyp4x</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2443803790</pqid></control><display><type>article</type><title>Molecular engineering of dendritic luminogens with thermally activated delayed fluorescence and aggregation-induced emission characteristics for efficient solution-processed non-doped OLEDs</title><source>Royal Society Of Chemistry Journals</source><creator>Ma, Fulong ; Zhao, Xinxin ; Ji, Hefang ; Zhang, Dongdong ; Hasrat, Kamran ; Qi, Zhengjian</creator><creatorcontrib>Ma, Fulong ; Zhao, Xinxin ; Ji, Hefang ; Zhang, Dongdong ; Hasrat, Kamran ; Qi, Zhengjian</creatorcontrib><description>Endowing thermally activated delayed fluorescence (TADF) emitters with aggregation-induced emission (AIE) characteristics and a fine film-forming ability is significant for realizing efficient solution-processed non-doped organic light-emitting diodes (OLEDs). Herein, a class of AIE-active TADF emitters adopting phenyl ketone as an acceptor and 9,9-diphenyl-9,10-dihydroacridine (or 9,9-dimethyl-9,10-dihydroacridine and phenoxazine) as a donor are exploited. The suppressed intermolecular packing derived from the highly twisted molecular configuration and multiple transition channels induce improved luminescence efficiency and more efficient reverse intersystem crossing (RISC) simultaneously in the solid state. Solution-processed non-doped and doped devices with the maximum external quantum efficiencies (EQEs) of 12.1% and 17.6%, respectively, are obtained when employing the dendritic luminogens of 3PXZ-BPCTPA as the emitter, which are better than the reference non-dendritic luminogens of PXZ-BPCTPA. This work thus provides an approach for designing dendritic luminogens with TADF and AIE features as promising candidates for high-performance solution-processed OLEDs. Improving the luminescence efficiency and reverse intersystem crossing of dendritic luminogens with AIE and TADF features by employing a highly twisted molecular configuration and multiple transition channels for solution-processed OLEDs.</description><identifier>ISSN: 2050-7526</identifier><identifier>EISSN: 2050-7534</identifier><identifier>DOI: 10.1039/d0tc02961k</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Agglomeration ; Dendritic structure ; Emission ; Emitters ; Fluorescence ; Organic light emitting diodes</subject><ispartof>Journal of materials chemistry. C, Materials for optical and electronic devices, 2020-09, Vol.8 (35), p.12272-12283</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-47b222bc807d272b4dfb208f1844b72331a5990bff5dc607c7226534cfad926d3</citedby><cites>FETCH-LOGICAL-c344t-47b222bc807d272b4dfb208f1844b72331a5990bff5dc607c7226534cfad926d3</cites><orcidid>0000-0002-1810-2086</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ma, Fulong</creatorcontrib><creatorcontrib>Zhao, Xinxin</creatorcontrib><creatorcontrib>Ji, Hefang</creatorcontrib><creatorcontrib>Zhang, Dongdong</creatorcontrib><creatorcontrib>Hasrat, Kamran</creatorcontrib><creatorcontrib>Qi, Zhengjian</creatorcontrib><title>Molecular engineering of dendritic luminogens with thermally activated delayed fluorescence and aggregation-induced emission characteristics for efficient solution-processed non-doped OLEDs</title><title>Journal of materials chemistry. C, Materials for optical and electronic devices</title><description>Endowing thermally activated delayed fluorescence (TADF) emitters with aggregation-induced emission (AIE) characteristics and a fine film-forming ability is significant for realizing efficient solution-processed non-doped organic light-emitting diodes (OLEDs). Herein, a class of AIE-active TADF emitters adopting phenyl ketone as an acceptor and 9,9-diphenyl-9,10-dihydroacridine (or 9,9-dimethyl-9,10-dihydroacridine and phenoxazine) as a donor are exploited. The suppressed intermolecular packing derived from the highly twisted molecular configuration and multiple transition channels induce improved luminescence efficiency and more efficient reverse intersystem crossing (RISC) simultaneously in the solid state. Solution-processed non-doped and doped devices with the maximum external quantum efficiencies (EQEs) of 12.1% and 17.6%, respectively, are obtained when employing the dendritic luminogens of 3PXZ-BPCTPA as the emitter, which are better than the reference non-dendritic luminogens of PXZ-BPCTPA. This work thus provides an approach for designing dendritic luminogens with TADF and AIE features as promising candidates for high-performance solution-processed OLEDs. Improving the luminescence efficiency and reverse intersystem crossing of dendritic luminogens with AIE and TADF features by employing a highly twisted molecular configuration and multiple transition channels for solution-processed OLEDs.</description><subject>Agglomeration</subject><subject>Dendritic structure</subject><subject>Emission</subject><subject>Emitters</subject><subject>Fluorescence</subject><subject>Organic light emitting diodes</subject><issn>2050-7526</issn><issn>2050-7534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kU1vFDEMhkcIJKrSS--VgrghTckk2fk4om2hiEW9lPMokzizKdlkiTOg_XH8t5ouKrf6Ysd67NfKW1XnDb9suBw-WF4MF0Pb_HhRnQi-4nW3kurlUy3a19UZ4j2n6Ju2b4eT6s-3FMAsQWcGcfYRIPs4s-SYhWizL96wsOx8TDNEZL992bKyhbzTIRyYNsX_0gUs0UEfKLuwpAxoIBpgOlqm5znDrItPsfbRLoYg2HlEajCz1Zl2kCaSEDKX6AznvPEQC8MUlse5fU4GEGky0sumPVW3m-srfFO9cjognP3Lp9X3T9d365t6c_v5y_rjpjZSqVKrbhJCTKbnnRWdmJR1k-C9a3qlpk5I2ejVMPDJuZU1Le9MJ0RLX2ectoNorTyt3h330iU_F8Ay3qclR5IchVKy57IbOFHvj5TJCTGDG_fZ73Q-jA0f_zo0XvG79aNDXwl-e4Qzmifuv4Pj3jpiLp5j5AMKyp4x</recordid><startdate>20200921</startdate><enddate>20200921</enddate><creator>Ma, Fulong</creator><creator>Zhao, Xinxin</creator><creator>Ji, Hefang</creator><creator>Zhang, Dongdong</creator><creator>Hasrat, Kamran</creator><creator>Qi, Zhengjian</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1810-2086</orcidid></search><sort><creationdate>20200921</creationdate><title>Molecular engineering of dendritic luminogens with thermally activated delayed fluorescence and aggregation-induced emission characteristics for efficient solution-processed non-doped OLEDs</title><author>Ma, Fulong ; Zhao, Xinxin ; Ji, Hefang ; Zhang, Dongdong ; Hasrat, Kamran ; Qi, Zhengjian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-47b222bc807d272b4dfb208f1844b72331a5990bff5dc607c7226534cfad926d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Agglomeration</topic><topic>Dendritic structure</topic><topic>Emission</topic><topic>Emitters</topic><topic>Fluorescence</topic><topic>Organic light emitting diodes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Fulong</creatorcontrib><creatorcontrib>Zhao, Xinxin</creatorcontrib><creatorcontrib>Ji, Hefang</creatorcontrib><creatorcontrib>Zhang, Dongdong</creatorcontrib><creatorcontrib>Hasrat, Kamran</creatorcontrib><creatorcontrib>Qi, Zhengjian</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Fulong</au><au>Zhao, Xinxin</au><au>Ji, Hefang</au><au>Zhang, Dongdong</au><au>Hasrat, Kamran</au><au>Qi, Zhengjian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular engineering of dendritic luminogens with thermally activated delayed fluorescence and aggregation-induced emission characteristics for efficient solution-processed non-doped OLEDs</atitle><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle><date>2020-09-21</date><risdate>2020</risdate><volume>8</volume><issue>35</issue><spage>12272</spage><epage>12283</epage><pages>12272-12283</pages><issn>2050-7526</issn><eissn>2050-7534</eissn><abstract>Endowing thermally activated delayed fluorescence (TADF) emitters with aggregation-induced emission (AIE) characteristics and a fine film-forming ability is significant for realizing efficient solution-processed non-doped organic light-emitting diodes (OLEDs). Herein, a class of AIE-active TADF emitters adopting phenyl ketone as an acceptor and 9,9-diphenyl-9,10-dihydroacridine (or 9,9-dimethyl-9,10-dihydroacridine and phenoxazine) as a donor are exploited. The suppressed intermolecular packing derived from the highly twisted molecular configuration and multiple transition channels induce improved luminescence efficiency and more efficient reverse intersystem crossing (RISC) simultaneously in the solid state. Solution-processed non-doped and doped devices with the maximum external quantum efficiencies (EQEs) of 12.1% and 17.6%, respectively, are obtained when employing the dendritic luminogens of 3PXZ-BPCTPA as the emitter, which are better than the reference non-dendritic luminogens of PXZ-BPCTPA. This work thus provides an approach for designing dendritic luminogens with TADF and AIE features as promising candidates for high-performance solution-processed OLEDs. Improving the luminescence efficiency and reverse intersystem crossing of dendritic luminogens with AIE and TADF features by employing a highly twisted molecular configuration and multiple transition channels for solution-processed OLEDs.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0tc02961k</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1810-2086</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7526
ispartof Journal of materials chemistry. C, Materials for optical and electronic devices, 2020-09, Vol.8 (35), p.12272-12283
issn 2050-7526
2050-7534
language eng
recordid cdi_proquest_journals_2443803790
source Royal Society Of Chemistry Journals
subjects Agglomeration
Dendritic structure
Emission
Emitters
Fluorescence
Organic light emitting diodes
title Molecular engineering of dendritic luminogens with thermally activated delayed fluorescence and aggregation-induced emission characteristics for efficient solution-processed non-doped OLEDs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T19%3A34%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20engineering%20of%20dendritic%20luminogens%20with%20thermally%20activated%20delayed%20fluorescence%20and%20aggregation-induced%20emission%20characteristics%20for%20efficient%20solution-processed%20non-doped%20OLEDs&rft.jtitle=Journal%20of%20materials%20chemistry.%20C,%20Materials%20for%20optical%20and%20electronic%20devices&rft.au=Ma,%20Fulong&rft.date=2020-09-21&rft.volume=8&rft.issue=35&rft.spage=12272&rft.epage=12283&rft.pages=12272-12283&rft.issn=2050-7526&rft.eissn=2050-7534&rft_id=info:doi/10.1039/d0tc02961k&rft_dat=%3Cproquest_cross%3E2443803790%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2443803790&rft_id=info:pmid/&rfr_iscdi=true