Pose optimization in robotic machining using static and dynamic stiffness models
•A static and dynamic stiffness model are applied to the same industrial robot.•Pose optimizations are performed using each model to maximize stiffness for milling.•Milling experiments are performed for varying locations and cutting parameters.•Dynamic model optimizations are shown to reduce vibrati...
Gespeichert in:
Veröffentlicht in: | Robotics and computer-integrated manufacturing 2020-12, Vol.66, p.101992, Article 101992 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 101992 |
container_title | Robotics and computer-integrated manufacturing |
container_volume | 66 |
creator | Cvitanic, Toni Nguyen, Vinh Melkote, Shreyes N. |
description | •A static and dynamic stiffness model are applied to the same industrial robot.•Pose optimizations are performed using each model to maximize stiffness for milling.•Milling experiments are performed for varying locations and cutting parameters.•Dynamic model optimizations are shown to reduce vibration due to resonance.•Static model optimizations perform comparably when the robot does not resonate.
Industrial robots are typically not used for milling of hard materials due to their low stiffness compared to traditional machine tools. Due to milling being a five degree of freedom (dof) operation, a typical six dof serial manipulator introduces a redundant degree of freedom in the robot pose. This redundancy can be exploited to optimize the pose of the robot during milling to minimize force-induced deflections at the end-effector. Stiffness modeling and optimization techniques for industrial robots utilizing both static (no mass and damping terms) and dynamic (mass and damping terms included) models exist. This paper presents a comparative study of robot pose optimization using static and dynamic stiffness models for different cutting scenarios. Milling experiments show that while a dynamic model-based robot pose optimization yields significant improvement over a static model-based optimization for cutting conditions where the time varying cutting forces approach the robot's natural frequencies, a static model-based optimization is sufficient when the frequency content of the cutting forces are not close to the robot's natural frequencies. |
doi_str_mv | 10.1016/j.rcim.2020.101992 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2443645778</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0736584520302039</els_id><sourcerecordid>2443645778</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-4abc18a264c6b3aa54f1867fb9d1ece9dbe63e5d42aeb06b7ccdb5112de5c83f3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouH78AU8Fz13z3Ra8yOIXLLgHPYc0mWrKNlmTrLD-elvr2cvM8PK-M8yD0BXBS4KJvOmX0bhhSTH9FZqGHqEFqaumpIJVx2iBKyZLUXNxis5S6jHGlAu2QJtNSFCEXXaD-9bZBV84X8TQhuxMMWjz4bzz78U-TTVlPcna28IevB7GOWXXdR5SKoZgYZsu0Emntwku__o5enu4f109leuXx-fV3bo0jNa55Lo1pNZUciNbprXgHall1bWNJWCgsS1IBsJyqqHFsq2Msa0ghFoQpmYdO0fX895dDJ97SFn1YR_9eFJRzpnkoqrq0UVnl4khpQid2kU36HhQBKuJnOrVRE5N5NRMbgzdzqHxHfhyEFUyDrwB6yKYrGxw_8V_AKBjePk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2443645778</pqid></control><display><type>article</type><title>Pose optimization in robotic machining using static and dynamic stiffness models</title><source>Elsevier ScienceDirect Journals</source><creator>Cvitanic, Toni ; Nguyen, Vinh ; Melkote, Shreyes N.</creator><creatorcontrib>Cvitanic, Toni ; Nguyen, Vinh ; Melkote, Shreyes N.</creatorcontrib><description>•A static and dynamic stiffness model are applied to the same industrial robot.•Pose optimizations are performed using each model to maximize stiffness for milling.•Milling experiments are performed for varying locations and cutting parameters.•Dynamic model optimizations are shown to reduce vibration due to resonance.•Static model optimizations perform comparably when the robot does not resonate.
Industrial robots are typically not used for milling of hard materials due to their low stiffness compared to traditional machine tools. Due to milling being a five degree of freedom (dof) operation, a typical six dof serial manipulator introduces a redundant degree of freedom in the robot pose. This redundancy can be exploited to optimize the pose of the robot during milling to minimize force-induced deflections at the end-effector. Stiffness modeling and optimization techniques for industrial robots utilizing both static (no mass and damping terms) and dynamic (mass and damping terms included) models exist. This paper presents a comparative study of robot pose optimization using static and dynamic stiffness models for different cutting scenarios. Milling experiments show that while a dynamic model-based robot pose optimization yields significant improvement over a static model-based optimization for cutting conditions where the time varying cutting forces approach the robot's natural frequencies, a static model-based optimization is sufficient when the frequency content of the cutting forces are not close to the robot's natural frequencies.</description><identifier>ISSN: 0736-5845</identifier><identifier>EISSN: 1879-2537</identifier><identifier>DOI: 10.1016/j.rcim.2020.101992</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Comparative studies ; Cutting force ; Damping ; Degrees of freedom ; Dynamic models ; Dynamic stiffness ; Hard materials ; Industrial robot ; Industrial robots ; Machine tools ; Milling (machining) ; Optimization ; Optimization techniques ; Pose optimization ; Redundancy ; Resonant frequencies ; Robot arms ; Robotic machining ; Robots ; Static models ; Static stiffness ; Stiffness</subject><ispartof>Robotics and computer-integrated manufacturing, 2020-12, Vol.66, p.101992, Article 101992</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Dec 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-4abc18a264c6b3aa54f1867fb9d1ece9dbe63e5d42aeb06b7ccdb5112de5c83f3</citedby><cites>FETCH-LOGICAL-c328t-4abc18a264c6b3aa54f1867fb9d1ece9dbe63e5d42aeb06b7ccdb5112de5c83f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0736584520302039$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Cvitanic, Toni</creatorcontrib><creatorcontrib>Nguyen, Vinh</creatorcontrib><creatorcontrib>Melkote, Shreyes N.</creatorcontrib><title>Pose optimization in robotic machining using static and dynamic stiffness models</title><title>Robotics and computer-integrated manufacturing</title><description>•A static and dynamic stiffness model are applied to the same industrial robot.•Pose optimizations are performed using each model to maximize stiffness for milling.•Milling experiments are performed for varying locations and cutting parameters.•Dynamic model optimizations are shown to reduce vibration due to resonance.•Static model optimizations perform comparably when the robot does not resonate.
Industrial robots are typically not used for milling of hard materials due to their low stiffness compared to traditional machine tools. Due to milling being a five degree of freedom (dof) operation, a typical six dof serial manipulator introduces a redundant degree of freedom in the robot pose. This redundancy can be exploited to optimize the pose of the robot during milling to minimize force-induced deflections at the end-effector. Stiffness modeling and optimization techniques for industrial robots utilizing both static (no mass and damping terms) and dynamic (mass and damping terms included) models exist. This paper presents a comparative study of robot pose optimization using static and dynamic stiffness models for different cutting scenarios. Milling experiments show that while a dynamic model-based robot pose optimization yields significant improvement over a static model-based optimization for cutting conditions where the time varying cutting forces approach the robot's natural frequencies, a static model-based optimization is sufficient when the frequency content of the cutting forces are not close to the robot's natural frequencies.</description><subject>Comparative studies</subject><subject>Cutting force</subject><subject>Damping</subject><subject>Degrees of freedom</subject><subject>Dynamic models</subject><subject>Dynamic stiffness</subject><subject>Hard materials</subject><subject>Industrial robot</subject><subject>Industrial robots</subject><subject>Machine tools</subject><subject>Milling (machining)</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>Pose optimization</subject><subject>Redundancy</subject><subject>Resonant frequencies</subject><subject>Robot arms</subject><subject>Robotic machining</subject><subject>Robots</subject><subject>Static models</subject><subject>Static stiffness</subject><subject>Stiffness</subject><issn>0736-5845</issn><issn>1879-2537</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouH78AU8Fz13z3Ra8yOIXLLgHPYc0mWrKNlmTrLD-elvr2cvM8PK-M8yD0BXBS4KJvOmX0bhhSTH9FZqGHqEFqaumpIJVx2iBKyZLUXNxis5S6jHGlAu2QJtNSFCEXXaD-9bZBV84X8TQhuxMMWjz4bzz78U-TTVlPcna28IevB7GOWXXdR5SKoZgYZsu0Emntwku__o5enu4f109leuXx-fV3bo0jNa55Lo1pNZUciNbprXgHall1bWNJWCgsS1IBsJyqqHFsq2Msa0ghFoQpmYdO0fX895dDJ97SFn1YR_9eFJRzpnkoqrq0UVnl4khpQid2kU36HhQBKuJnOrVRE5N5NRMbgzdzqHxHfhyEFUyDrwB6yKYrGxw_8V_AKBjePk</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Cvitanic, Toni</creator><creator>Nguyen, Vinh</creator><creator>Melkote, Shreyes N.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202012</creationdate><title>Pose optimization in robotic machining using static and dynamic stiffness models</title><author>Cvitanic, Toni ; Nguyen, Vinh ; Melkote, Shreyes N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-4abc18a264c6b3aa54f1867fb9d1ece9dbe63e5d42aeb06b7ccdb5112de5c83f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Comparative studies</topic><topic>Cutting force</topic><topic>Damping</topic><topic>Degrees of freedom</topic><topic>Dynamic models</topic><topic>Dynamic stiffness</topic><topic>Hard materials</topic><topic>Industrial robot</topic><topic>Industrial robots</topic><topic>Machine tools</topic><topic>Milling (machining)</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>Pose optimization</topic><topic>Redundancy</topic><topic>Resonant frequencies</topic><topic>Robot arms</topic><topic>Robotic machining</topic><topic>Robots</topic><topic>Static models</topic><topic>Static stiffness</topic><topic>Stiffness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cvitanic, Toni</creatorcontrib><creatorcontrib>Nguyen, Vinh</creatorcontrib><creatorcontrib>Melkote, Shreyes N.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Robotics and computer-integrated manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cvitanic, Toni</au><au>Nguyen, Vinh</au><au>Melkote, Shreyes N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pose optimization in robotic machining using static and dynamic stiffness models</atitle><jtitle>Robotics and computer-integrated manufacturing</jtitle><date>2020-12</date><risdate>2020</risdate><volume>66</volume><spage>101992</spage><pages>101992-</pages><artnum>101992</artnum><issn>0736-5845</issn><eissn>1879-2537</eissn><abstract>•A static and dynamic stiffness model are applied to the same industrial robot.•Pose optimizations are performed using each model to maximize stiffness for milling.•Milling experiments are performed for varying locations and cutting parameters.•Dynamic model optimizations are shown to reduce vibration due to resonance.•Static model optimizations perform comparably when the robot does not resonate.
Industrial robots are typically not used for milling of hard materials due to their low stiffness compared to traditional machine tools. Due to milling being a five degree of freedom (dof) operation, a typical six dof serial manipulator introduces a redundant degree of freedom in the robot pose. This redundancy can be exploited to optimize the pose of the robot during milling to minimize force-induced deflections at the end-effector. Stiffness modeling and optimization techniques for industrial robots utilizing both static (no mass and damping terms) and dynamic (mass and damping terms included) models exist. This paper presents a comparative study of robot pose optimization using static and dynamic stiffness models for different cutting scenarios. Milling experiments show that while a dynamic model-based robot pose optimization yields significant improvement over a static model-based optimization for cutting conditions where the time varying cutting forces approach the robot's natural frequencies, a static model-based optimization is sufficient when the frequency content of the cutting forces are not close to the robot's natural frequencies.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.rcim.2020.101992</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0736-5845 |
ispartof | Robotics and computer-integrated manufacturing, 2020-12, Vol.66, p.101992, Article 101992 |
issn | 0736-5845 1879-2537 |
language | eng |
recordid | cdi_proquest_journals_2443645778 |
source | Elsevier ScienceDirect Journals |
subjects | Comparative studies Cutting force Damping Degrees of freedom Dynamic models Dynamic stiffness Hard materials Industrial robot Industrial robots Machine tools Milling (machining) Optimization Optimization techniques Pose optimization Redundancy Resonant frequencies Robot arms Robotic machining Robots Static models Static stiffness Stiffness |
title | Pose optimization in robotic machining using static and dynamic stiffness models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T03%3A01%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pose%20optimization%20in%20robotic%20machining%20using%20static%20and%20dynamic%20stiffness%20models&rft.jtitle=Robotics%20and%20computer-integrated%20manufacturing&rft.au=Cvitanic,%20Toni&rft.date=2020-12&rft.volume=66&rft.spage=101992&rft.pages=101992-&rft.artnum=101992&rft.issn=0736-5845&rft.eissn=1879-2537&rft_id=info:doi/10.1016/j.rcim.2020.101992&rft_dat=%3Cproquest_cross%3E2443645778%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2443645778&rft_id=info:pmid/&rft_els_id=S0736584520302039&rfr_iscdi=true |