Pose optimization in robotic machining using static and dynamic stiffness models

•A static and dynamic stiffness model are applied to the same industrial robot.•Pose optimizations are performed using each model to maximize stiffness for milling.•Milling experiments are performed for varying locations and cutting parameters.•Dynamic model optimizations are shown to reduce vibrati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Robotics and computer-integrated manufacturing 2020-12, Vol.66, p.101992, Article 101992
Hauptverfasser: Cvitanic, Toni, Nguyen, Vinh, Melkote, Shreyes N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 101992
container_title Robotics and computer-integrated manufacturing
container_volume 66
creator Cvitanic, Toni
Nguyen, Vinh
Melkote, Shreyes N.
description •A static and dynamic stiffness model are applied to the same industrial robot.•Pose optimizations are performed using each model to maximize stiffness for milling.•Milling experiments are performed for varying locations and cutting parameters.•Dynamic model optimizations are shown to reduce vibration due to resonance.•Static model optimizations perform comparably when the robot does not resonate. Industrial robots are typically not used for milling of hard materials due to their low stiffness compared to traditional machine tools. Due to milling being a five degree of freedom (dof) operation, a typical six dof serial manipulator introduces a redundant degree of freedom in the robot pose. This redundancy can be exploited to optimize the pose of the robot during milling to minimize force-induced deflections at the end-effector. Stiffness modeling and optimization techniques for industrial robots utilizing both static (no mass and damping terms) and dynamic (mass and damping terms included) models exist. This paper presents a comparative study of robot pose optimization using static and dynamic stiffness models for different cutting scenarios. Milling experiments show that while a dynamic model-based robot pose optimization yields significant improvement over a static model-based optimization for cutting conditions where the time varying cutting forces approach the robot's natural frequencies, a static model-based optimization is sufficient when the frequency content of the cutting forces are not close to the robot's natural frequencies.
doi_str_mv 10.1016/j.rcim.2020.101992
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2443645778</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0736584520302039</els_id><sourcerecordid>2443645778</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-4abc18a264c6b3aa54f1867fb9d1ece9dbe63e5d42aeb06b7ccdb5112de5c83f3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouH78AU8Fz13z3Ra8yOIXLLgHPYc0mWrKNlmTrLD-elvr2cvM8PK-M8yD0BXBS4KJvOmX0bhhSTH9FZqGHqEFqaumpIJVx2iBKyZLUXNxis5S6jHGlAu2QJtNSFCEXXaD-9bZBV84X8TQhuxMMWjz4bzz78U-TTVlPcna28IevB7GOWXXdR5SKoZgYZsu0Emntwku__o5enu4f109leuXx-fV3bo0jNa55Lo1pNZUciNbprXgHall1bWNJWCgsS1IBsJyqqHFsq2Msa0ghFoQpmYdO0fX895dDJ97SFn1YR_9eFJRzpnkoqrq0UVnl4khpQid2kU36HhQBKuJnOrVRE5N5NRMbgzdzqHxHfhyEFUyDrwB6yKYrGxw_8V_AKBjePk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2443645778</pqid></control><display><type>article</type><title>Pose optimization in robotic machining using static and dynamic stiffness models</title><source>Elsevier ScienceDirect Journals</source><creator>Cvitanic, Toni ; Nguyen, Vinh ; Melkote, Shreyes N.</creator><creatorcontrib>Cvitanic, Toni ; Nguyen, Vinh ; Melkote, Shreyes N.</creatorcontrib><description>•A static and dynamic stiffness model are applied to the same industrial robot.•Pose optimizations are performed using each model to maximize stiffness for milling.•Milling experiments are performed for varying locations and cutting parameters.•Dynamic model optimizations are shown to reduce vibration due to resonance.•Static model optimizations perform comparably when the robot does not resonate. Industrial robots are typically not used for milling of hard materials due to their low stiffness compared to traditional machine tools. Due to milling being a five degree of freedom (dof) operation, a typical six dof serial manipulator introduces a redundant degree of freedom in the robot pose. This redundancy can be exploited to optimize the pose of the robot during milling to minimize force-induced deflections at the end-effector. Stiffness modeling and optimization techniques for industrial robots utilizing both static (no mass and damping terms) and dynamic (mass and damping terms included) models exist. This paper presents a comparative study of robot pose optimization using static and dynamic stiffness models for different cutting scenarios. Milling experiments show that while a dynamic model-based robot pose optimization yields significant improvement over a static model-based optimization for cutting conditions where the time varying cutting forces approach the robot's natural frequencies, a static model-based optimization is sufficient when the frequency content of the cutting forces are not close to the robot's natural frequencies.</description><identifier>ISSN: 0736-5845</identifier><identifier>EISSN: 1879-2537</identifier><identifier>DOI: 10.1016/j.rcim.2020.101992</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Comparative studies ; Cutting force ; Damping ; Degrees of freedom ; Dynamic models ; Dynamic stiffness ; Hard materials ; Industrial robot ; Industrial robots ; Machine tools ; Milling (machining) ; Optimization ; Optimization techniques ; Pose optimization ; Redundancy ; Resonant frequencies ; Robot arms ; Robotic machining ; Robots ; Static models ; Static stiffness ; Stiffness</subject><ispartof>Robotics and computer-integrated manufacturing, 2020-12, Vol.66, p.101992, Article 101992</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Dec 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-4abc18a264c6b3aa54f1867fb9d1ece9dbe63e5d42aeb06b7ccdb5112de5c83f3</citedby><cites>FETCH-LOGICAL-c328t-4abc18a264c6b3aa54f1867fb9d1ece9dbe63e5d42aeb06b7ccdb5112de5c83f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0736584520302039$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Cvitanic, Toni</creatorcontrib><creatorcontrib>Nguyen, Vinh</creatorcontrib><creatorcontrib>Melkote, Shreyes N.</creatorcontrib><title>Pose optimization in robotic machining using static and dynamic stiffness models</title><title>Robotics and computer-integrated manufacturing</title><description>•A static and dynamic stiffness model are applied to the same industrial robot.•Pose optimizations are performed using each model to maximize stiffness for milling.•Milling experiments are performed for varying locations and cutting parameters.•Dynamic model optimizations are shown to reduce vibration due to resonance.•Static model optimizations perform comparably when the robot does not resonate. Industrial robots are typically not used for milling of hard materials due to their low stiffness compared to traditional machine tools. Due to milling being a five degree of freedom (dof) operation, a typical six dof serial manipulator introduces a redundant degree of freedom in the robot pose. This redundancy can be exploited to optimize the pose of the robot during milling to minimize force-induced deflections at the end-effector. Stiffness modeling and optimization techniques for industrial robots utilizing both static (no mass and damping terms) and dynamic (mass and damping terms included) models exist. This paper presents a comparative study of robot pose optimization using static and dynamic stiffness models for different cutting scenarios. Milling experiments show that while a dynamic model-based robot pose optimization yields significant improvement over a static model-based optimization for cutting conditions where the time varying cutting forces approach the robot's natural frequencies, a static model-based optimization is sufficient when the frequency content of the cutting forces are not close to the robot's natural frequencies.</description><subject>Comparative studies</subject><subject>Cutting force</subject><subject>Damping</subject><subject>Degrees of freedom</subject><subject>Dynamic models</subject><subject>Dynamic stiffness</subject><subject>Hard materials</subject><subject>Industrial robot</subject><subject>Industrial robots</subject><subject>Machine tools</subject><subject>Milling (machining)</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>Pose optimization</subject><subject>Redundancy</subject><subject>Resonant frequencies</subject><subject>Robot arms</subject><subject>Robotic machining</subject><subject>Robots</subject><subject>Static models</subject><subject>Static stiffness</subject><subject>Stiffness</subject><issn>0736-5845</issn><issn>1879-2537</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouH78AU8Fz13z3Ra8yOIXLLgHPYc0mWrKNlmTrLD-elvr2cvM8PK-M8yD0BXBS4KJvOmX0bhhSTH9FZqGHqEFqaumpIJVx2iBKyZLUXNxis5S6jHGlAu2QJtNSFCEXXaD-9bZBV84X8TQhuxMMWjz4bzz78U-TTVlPcna28IevB7GOWXXdR5SKoZgYZsu0Emntwku__o5enu4f109leuXx-fV3bo0jNa55Lo1pNZUciNbprXgHall1bWNJWCgsS1IBsJyqqHFsq2Msa0ghFoQpmYdO0fX895dDJ97SFn1YR_9eFJRzpnkoqrq0UVnl4khpQid2kU36HhQBKuJnOrVRE5N5NRMbgzdzqHxHfhyEFUyDrwB6yKYrGxw_8V_AKBjePk</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Cvitanic, Toni</creator><creator>Nguyen, Vinh</creator><creator>Melkote, Shreyes N.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202012</creationdate><title>Pose optimization in robotic machining using static and dynamic stiffness models</title><author>Cvitanic, Toni ; Nguyen, Vinh ; Melkote, Shreyes N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-4abc18a264c6b3aa54f1867fb9d1ece9dbe63e5d42aeb06b7ccdb5112de5c83f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Comparative studies</topic><topic>Cutting force</topic><topic>Damping</topic><topic>Degrees of freedom</topic><topic>Dynamic models</topic><topic>Dynamic stiffness</topic><topic>Hard materials</topic><topic>Industrial robot</topic><topic>Industrial robots</topic><topic>Machine tools</topic><topic>Milling (machining)</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>Pose optimization</topic><topic>Redundancy</topic><topic>Resonant frequencies</topic><topic>Robot arms</topic><topic>Robotic machining</topic><topic>Robots</topic><topic>Static models</topic><topic>Static stiffness</topic><topic>Stiffness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cvitanic, Toni</creatorcontrib><creatorcontrib>Nguyen, Vinh</creatorcontrib><creatorcontrib>Melkote, Shreyes N.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Robotics and computer-integrated manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cvitanic, Toni</au><au>Nguyen, Vinh</au><au>Melkote, Shreyes N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pose optimization in robotic machining using static and dynamic stiffness models</atitle><jtitle>Robotics and computer-integrated manufacturing</jtitle><date>2020-12</date><risdate>2020</risdate><volume>66</volume><spage>101992</spage><pages>101992-</pages><artnum>101992</artnum><issn>0736-5845</issn><eissn>1879-2537</eissn><abstract>•A static and dynamic stiffness model are applied to the same industrial robot.•Pose optimizations are performed using each model to maximize stiffness for milling.•Milling experiments are performed for varying locations and cutting parameters.•Dynamic model optimizations are shown to reduce vibration due to resonance.•Static model optimizations perform comparably when the robot does not resonate. Industrial robots are typically not used for milling of hard materials due to their low stiffness compared to traditional machine tools. Due to milling being a five degree of freedom (dof) operation, a typical six dof serial manipulator introduces a redundant degree of freedom in the robot pose. This redundancy can be exploited to optimize the pose of the robot during milling to minimize force-induced deflections at the end-effector. Stiffness modeling and optimization techniques for industrial robots utilizing both static (no mass and damping terms) and dynamic (mass and damping terms included) models exist. This paper presents a comparative study of robot pose optimization using static and dynamic stiffness models for different cutting scenarios. Milling experiments show that while a dynamic model-based robot pose optimization yields significant improvement over a static model-based optimization for cutting conditions where the time varying cutting forces approach the robot's natural frequencies, a static model-based optimization is sufficient when the frequency content of the cutting forces are not close to the robot's natural frequencies.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.rcim.2020.101992</doi></addata></record>
fulltext fulltext
identifier ISSN: 0736-5845
ispartof Robotics and computer-integrated manufacturing, 2020-12, Vol.66, p.101992, Article 101992
issn 0736-5845
1879-2537
language eng
recordid cdi_proquest_journals_2443645778
source Elsevier ScienceDirect Journals
subjects Comparative studies
Cutting force
Damping
Degrees of freedom
Dynamic models
Dynamic stiffness
Hard materials
Industrial robot
Industrial robots
Machine tools
Milling (machining)
Optimization
Optimization techniques
Pose optimization
Redundancy
Resonant frequencies
Robot arms
Robotic machining
Robots
Static models
Static stiffness
Stiffness
title Pose optimization in robotic machining using static and dynamic stiffness models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T03%3A01%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pose%20optimization%20in%20robotic%20machining%20using%20static%20and%20dynamic%20stiffness%20models&rft.jtitle=Robotics%20and%20computer-integrated%20manufacturing&rft.au=Cvitanic,%20Toni&rft.date=2020-12&rft.volume=66&rft.spage=101992&rft.pages=101992-&rft.artnum=101992&rft.issn=0736-5845&rft.eissn=1879-2537&rft_id=info:doi/10.1016/j.rcim.2020.101992&rft_dat=%3Cproquest_cross%3E2443645778%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2443645778&rft_id=info:pmid/&rft_els_id=S0736584520302039&rfr_iscdi=true