Indiscrete metal/metal-N-C synergic active sites for efficient and durable oxygen electrocatalysis toward advanced Zn-air batteries
[Display omitted] •TM/TM-N-C(TM = Fe, Co, Ni) carbon nanosheets were fabricated from lysine and NaCl.•Ni/Ni-N-C demonstrates the highest ORR-OER stability over a wide potential window.•Ni/Ni-N-C delivers remarkable performance for rechargeable Zn-air battery.•Synergistic effect between Ni and Ni-N4-...
Gespeichert in:
Veröffentlicht in: | Applied catalysis. B, Environmental Environmental, 2020-09, Vol.272, p.118967, Article 118967 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 118967 |
container_title | Applied catalysis. B, Environmental |
container_volume | 272 |
creator | Zheng, Xiangjun Cao, Xuecheng Sun, Zhihui Zeng, Kai Yan, Jin Strasser, Peter Chen, Xin Sun, Shuhui Yang, Ruizhi |
description | [Display omitted]
•TM/TM-N-C(TM = Fe, Co, Ni) carbon nanosheets were fabricated from lysine and NaCl.•Ni/Ni-N-C demonstrates the highest ORR-OER stability over a wide potential window.•Ni/Ni-N-C delivers remarkable performance for rechargeable Zn-air battery.•Synergistic effect between Ni and Ni-N4-C is critical to OER activity.•Durability of Ni/Ni-N-C is ascribed to stable Ni3+-N for protecting carbon.
Carbon has been deemed promising electrocatalyst for oxygen reduction/evolution reaction (ORR/OER). However, most carbon materials are not stable in highly oxidative OER environments. Herein, nitrogen (N) and transition metal (TM) co-doped carbon nanosheets hybridizing with transition metal (TM/TM-N-C, TM = Fe, Co, Ni) are developed from biomass lysine by employing a NaCl template and molten-salt-promoted graphitization process. Among the as-synthesized TM/TM-N-C, the Ni/Ni-N-C with Ni nanocubes embedded in carbon demonstrates an excellent ORR-OER stability during the potential of 0.06–1.96 V. The rechargeable Zn-air battery with the fabricated Ni/Ni-N-C as the cathode catalyst produces a low voltage gap of 0.773 V, which is only slightly increased by 5 % after 150 cycles testing. Combined experimental and theoretical studies reveal that the exceptional activity and ORR-OER wide potential durability of Ni/Ni-N-C can be ascribed to highly active Ni-N4-C configuration, synergistic effect between Ni and Ni-N4-C, carbon nanosheets structure and formation of stable Ni3+-N for protecting carbon from oxidation. |
doi_str_mv | 10.1016/j.apcatb.2020.118967 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2443645069</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0926337320303829</els_id><sourcerecordid>2443645069</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-1958cf33e815c81ad0c388d38801a3b586b9411d240e530f3a58f6d9a23130f03</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwDxgsMae14yR1FiRU8VGpggUWFutiXypHaVJst5CZP45LmBnuTne6r_ch5JqzGWe8mDcz2GkI1SxlaSxxWRaLEzLhciESIaU4JRNWpkUixEKckwvvG8ZYKlI5Id-rzlivHQakWwzQzn998pwsqR86dBurKehgD0i9Dehp3TuKdW21xS5Q6Aw1ewdVi7T_GjbYUWxRB9fHh6AdvPU09J_gDAVzgE6joe9dAtbRCkJAZ9FfkrMaWo9Xf3FK3h7uX5dPyfrlcbW8Wyc6YywkvMylroVAyXMtORimozgTjXEQVS6Lqsw4N2nGMBesFpDLujAlpILHlIkpuRn37lz_sUcfVNPvXRdPqjTLRJHlrChjVzZ2add777BWO2e34AbFmTriVo0acasjbjXijmO34xhGBQeLTvkjoajXushDmd7-v-AH00SLoQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2443645069</pqid></control><display><type>article</type><title>Indiscrete metal/metal-N-C synergic active sites for efficient and durable oxygen electrocatalysis toward advanced Zn-air batteries</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Zheng, Xiangjun ; Cao, Xuecheng ; Sun, Zhihui ; Zeng, Kai ; Yan, Jin ; Strasser, Peter ; Chen, Xin ; Sun, Shuhui ; Yang, Ruizhi</creator><creatorcontrib>Zheng, Xiangjun ; Cao, Xuecheng ; Sun, Zhihui ; Zeng, Kai ; Yan, Jin ; Strasser, Peter ; Chen, Xin ; Sun, Shuhui ; Yang, Ruizhi</creatorcontrib><description>[Display omitted]
•TM/TM-N-C(TM = Fe, Co, Ni) carbon nanosheets were fabricated from lysine and NaCl.•Ni/Ni-N-C demonstrates the highest ORR-OER stability over a wide potential window.•Ni/Ni-N-C delivers remarkable performance for rechargeable Zn-air battery.•Synergistic effect between Ni and Ni-N4-C is critical to OER activity.•Durability of Ni/Ni-N-C is ascribed to stable Ni3+-N for protecting carbon.
Carbon has been deemed promising electrocatalyst for oxygen reduction/evolution reaction (ORR/OER). However, most carbon materials are not stable in highly oxidative OER environments. Herein, nitrogen (N) and transition metal (TM) co-doped carbon nanosheets hybridizing with transition metal (TM/TM-N-C, TM = Fe, Co, Ni) are developed from biomass lysine by employing a NaCl template and molten-salt-promoted graphitization process. Among the as-synthesized TM/TM-N-C, the Ni/Ni-N-C with Ni nanocubes embedded in carbon demonstrates an excellent ORR-OER stability during the potential of 0.06–1.96 V. The rechargeable Zn-air battery with the fabricated Ni/Ni-N-C as the cathode catalyst produces a low voltage gap of 0.773 V, which is only slightly increased by 5 % after 150 cycles testing. Combined experimental and theoretical studies reveal that the exceptional activity and ORR-OER wide potential durability of Ni/Ni-N-C can be ascribed to highly active Ni-N4-C configuration, synergistic effect between Ni and Ni-N4-C, carbon nanosheets structure and formation of stable Ni3+-N for protecting carbon from oxidation.</description><identifier>ISSN: 0926-3373</identifier><identifier>EISSN: 1873-3883</identifier><identifier>DOI: 10.1016/j.apcatb.2020.118967</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Batteries ; Carbon ; Catalysts ; Durability ; Electrocatalysts ; Graphitization ; Iron ; Low voltage ; Lysine ; Metal air batteries ; Metal/Metal-N-C ; Metals ; NaCl template ; Nanostructure ; Nickel ; Nitrogen ; Oxidation ; Oxygen ; Oxygen electrocatalysis ; Rechargeable batteries ; Sodium chloride ; Synergic active sites ; Synergistic effect ; Transition metals ; Zinc ; Zinc-oxygen batteries ; Zn-air batteries</subject><ispartof>Applied catalysis. B, Environmental, 2020-09, Vol.272, p.118967, Article 118967</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Sep 5, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-1958cf33e815c81ad0c388d38801a3b586b9411d240e530f3a58f6d9a23130f03</citedby><cites>FETCH-LOGICAL-c400t-1958cf33e815c81ad0c388d38801a3b586b9411d240e530f3a58f6d9a23130f03</cites><orcidid>0000-0002-9025-7496 ; 0000-0002-5120-1983</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.apcatb.2020.118967$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Zheng, Xiangjun</creatorcontrib><creatorcontrib>Cao, Xuecheng</creatorcontrib><creatorcontrib>Sun, Zhihui</creatorcontrib><creatorcontrib>Zeng, Kai</creatorcontrib><creatorcontrib>Yan, Jin</creatorcontrib><creatorcontrib>Strasser, Peter</creatorcontrib><creatorcontrib>Chen, Xin</creatorcontrib><creatorcontrib>Sun, Shuhui</creatorcontrib><creatorcontrib>Yang, Ruizhi</creatorcontrib><title>Indiscrete metal/metal-N-C synergic active sites for efficient and durable oxygen electrocatalysis toward advanced Zn-air batteries</title><title>Applied catalysis. B, Environmental</title><description>[Display omitted]
•TM/TM-N-C(TM = Fe, Co, Ni) carbon nanosheets were fabricated from lysine and NaCl.•Ni/Ni-N-C demonstrates the highest ORR-OER stability over a wide potential window.•Ni/Ni-N-C delivers remarkable performance for rechargeable Zn-air battery.•Synergistic effect between Ni and Ni-N4-C is critical to OER activity.•Durability of Ni/Ni-N-C is ascribed to stable Ni3+-N for protecting carbon.
Carbon has been deemed promising electrocatalyst for oxygen reduction/evolution reaction (ORR/OER). However, most carbon materials are not stable in highly oxidative OER environments. Herein, nitrogen (N) and transition metal (TM) co-doped carbon nanosheets hybridizing with transition metal (TM/TM-N-C, TM = Fe, Co, Ni) are developed from biomass lysine by employing a NaCl template and molten-salt-promoted graphitization process. Among the as-synthesized TM/TM-N-C, the Ni/Ni-N-C with Ni nanocubes embedded in carbon demonstrates an excellent ORR-OER stability during the potential of 0.06–1.96 V. The rechargeable Zn-air battery with the fabricated Ni/Ni-N-C as the cathode catalyst produces a low voltage gap of 0.773 V, which is only slightly increased by 5 % after 150 cycles testing. Combined experimental and theoretical studies reveal that the exceptional activity and ORR-OER wide potential durability of Ni/Ni-N-C can be ascribed to highly active Ni-N4-C configuration, synergistic effect between Ni and Ni-N4-C, carbon nanosheets structure and formation of stable Ni3+-N for protecting carbon from oxidation.</description><subject>Batteries</subject><subject>Carbon</subject><subject>Catalysts</subject><subject>Durability</subject><subject>Electrocatalysts</subject><subject>Graphitization</subject><subject>Iron</subject><subject>Low voltage</subject><subject>Lysine</subject><subject>Metal air batteries</subject><subject>Metal/Metal-N-C</subject><subject>Metals</subject><subject>NaCl template</subject><subject>Nanostructure</subject><subject>Nickel</subject><subject>Nitrogen</subject><subject>Oxidation</subject><subject>Oxygen</subject><subject>Oxygen electrocatalysis</subject><subject>Rechargeable batteries</subject><subject>Sodium chloride</subject><subject>Synergic active sites</subject><subject>Synergistic effect</subject><subject>Transition metals</subject><subject>Zinc</subject><subject>Zinc-oxygen batteries</subject><subject>Zn-air batteries</subject><issn>0926-3373</issn><issn>1873-3883</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwDxgsMae14yR1FiRU8VGpggUWFutiXypHaVJst5CZP45LmBnuTne6r_ch5JqzGWe8mDcz2GkI1SxlaSxxWRaLEzLhciESIaU4JRNWpkUixEKckwvvG8ZYKlI5Id-rzlivHQakWwzQzn998pwsqR86dBurKehgD0i9Dehp3TuKdW21xS5Q6Aw1ewdVi7T_GjbYUWxRB9fHh6AdvPU09J_gDAVzgE6joe9dAtbRCkJAZ9FfkrMaWo9Xf3FK3h7uX5dPyfrlcbW8Wyc6YywkvMylroVAyXMtORimozgTjXEQVS6Lqsw4N2nGMBesFpDLujAlpILHlIkpuRn37lz_sUcfVNPvXRdPqjTLRJHlrChjVzZ2add777BWO2e34AbFmTriVo0acasjbjXijmO34xhGBQeLTvkjoajXushDmd7-v-AH00SLoQ</recordid><startdate>20200905</startdate><enddate>20200905</enddate><creator>Zheng, Xiangjun</creator><creator>Cao, Xuecheng</creator><creator>Sun, Zhihui</creator><creator>Zeng, Kai</creator><creator>Yan, Jin</creator><creator>Strasser, Peter</creator><creator>Chen, Xin</creator><creator>Sun, Shuhui</creator><creator>Yang, Ruizhi</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-9025-7496</orcidid><orcidid>https://orcid.org/0000-0002-5120-1983</orcidid></search><sort><creationdate>20200905</creationdate><title>Indiscrete metal/metal-N-C synergic active sites for efficient and durable oxygen electrocatalysis toward advanced Zn-air batteries</title><author>Zheng, Xiangjun ; Cao, Xuecheng ; Sun, Zhihui ; Zeng, Kai ; Yan, Jin ; Strasser, Peter ; Chen, Xin ; Sun, Shuhui ; Yang, Ruizhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-1958cf33e815c81ad0c388d38801a3b586b9411d240e530f3a58f6d9a23130f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Batteries</topic><topic>Carbon</topic><topic>Catalysts</topic><topic>Durability</topic><topic>Electrocatalysts</topic><topic>Graphitization</topic><topic>Iron</topic><topic>Low voltage</topic><topic>Lysine</topic><topic>Metal air batteries</topic><topic>Metal/Metal-N-C</topic><topic>Metals</topic><topic>NaCl template</topic><topic>Nanostructure</topic><topic>Nickel</topic><topic>Nitrogen</topic><topic>Oxidation</topic><topic>Oxygen</topic><topic>Oxygen electrocatalysis</topic><topic>Rechargeable batteries</topic><topic>Sodium chloride</topic><topic>Synergic active sites</topic><topic>Synergistic effect</topic><topic>Transition metals</topic><topic>Zinc</topic><topic>Zinc-oxygen batteries</topic><topic>Zn-air batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Xiangjun</creatorcontrib><creatorcontrib>Cao, Xuecheng</creatorcontrib><creatorcontrib>Sun, Zhihui</creatorcontrib><creatorcontrib>Zeng, Kai</creatorcontrib><creatorcontrib>Yan, Jin</creatorcontrib><creatorcontrib>Strasser, Peter</creatorcontrib><creatorcontrib>Chen, Xin</creatorcontrib><creatorcontrib>Sun, Shuhui</creatorcontrib><creatorcontrib>Yang, Ruizhi</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Applied catalysis. B, Environmental</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Xiangjun</au><au>Cao, Xuecheng</au><au>Sun, Zhihui</au><au>Zeng, Kai</au><au>Yan, Jin</au><au>Strasser, Peter</au><au>Chen, Xin</au><au>Sun, Shuhui</au><au>Yang, Ruizhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Indiscrete metal/metal-N-C synergic active sites for efficient and durable oxygen electrocatalysis toward advanced Zn-air batteries</atitle><jtitle>Applied catalysis. B, Environmental</jtitle><date>2020-09-05</date><risdate>2020</risdate><volume>272</volume><spage>118967</spage><pages>118967-</pages><artnum>118967</artnum><issn>0926-3373</issn><eissn>1873-3883</eissn><abstract>[Display omitted]
•TM/TM-N-C(TM = Fe, Co, Ni) carbon nanosheets were fabricated from lysine and NaCl.•Ni/Ni-N-C demonstrates the highest ORR-OER stability over a wide potential window.•Ni/Ni-N-C delivers remarkable performance for rechargeable Zn-air battery.•Synergistic effect between Ni and Ni-N4-C is critical to OER activity.•Durability of Ni/Ni-N-C is ascribed to stable Ni3+-N for protecting carbon.
Carbon has been deemed promising electrocatalyst for oxygen reduction/evolution reaction (ORR/OER). However, most carbon materials are not stable in highly oxidative OER environments. Herein, nitrogen (N) and transition metal (TM) co-doped carbon nanosheets hybridizing with transition metal (TM/TM-N-C, TM = Fe, Co, Ni) are developed from biomass lysine by employing a NaCl template and molten-salt-promoted graphitization process. Among the as-synthesized TM/TM-N-C, the Ni/Ni-N-C with Ni nanocubes embedded in carbon demonstrates an excellent ORR-OER stability during the potential of 0.06–1.96 V. The rechargeable Zn-air battery with the fabricated Ni/Ni-N-C as the cathode catalyst produces a low voltage gap of 0.773 V, which is only slightly increased by 5 % after 150 cycles testing. Combined experimental and theoretical studies reveal that the exceptional activity and ORR-OER wide potential durability of Ni/Ni-N-C can be ascribed to highly active Ni-N4-C configuration, synergistic effect between Ni and Ni-N4-C, carbon nanosheets structure and formation of stable Ni3+-N for protecting carbon from oxidation.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.apcatb.2020.118967</doi><orcidid>https://orcid.org/0000-0002-9025-7496</orcidid><orcidid>https://orcid.org/0000-0002-5120-1983</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0926-3373 |
ispartof | Applied catalysis. B, Environmental, 2020-09, Vol.272, p.118967, Article 118967 |
issn | 0926-3373 1873-3883 |
language | eng |
recordid | cdi_proquest_journals_2443645069 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Batteries Carbon Catalysts Durability Electrocatalysts Graphitization Iron Low voltage Lysine Metal air batteries Metal/Metal-N-C Metals NaCl template Nanostructure Nickel Nitrogen Oxidation Oxygen Oxygen electrocatalysis Rechargeable batteries Sodium chloride Synergic active sites Synergistic effect Transition metals Zinc Zinc-oxygen batteries Zn-air batteries |
title | Indiscrete metal/metal-N-C synergic active sites for efficient and durable oxygen electrocatalysis toward advanced Zn-air batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T15%3A16%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Indiscrete%20metal/metal-N-C%20synergic%20active%20sites%20for%20efficient%20and%20durable%20oxygen%20electrocatalysis%20toward%20advanced%20Zn-air%20batteries&rft.jtitle=Applied%20catalysis.%20B,%20Environmental&rft.au=Zheng,%20Xiangjun&rft.date=2020-09-05&rft.volume=272&rft.spage=118967&rft.pages=118967-&rft.artnum=118967&rft.issn=0926-3373&rft.eissn=1873-3883&rft_id=info:doi/10.1016/j.apcatb.2020.118967&rft_dat=%3Cproquest_cross%3E2443645069%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2443645069&rft_id=info:pmid/&rft_els_id=S0926337320303829&rfr_iscdi=true |