Intrinsic thermal decomposition pathways of lead halide perovskites APbX3
We present a systematic study on intrinsic thermal stability of a series of complex lead halides APbX3, used as absorber materials in perovskite solar cells. Mechanistically, the perovskites APbX3 were shown to decompose under thermal stress conditions initially to form PbX2 and AX salts. Thermolysi...
Gespeichert in:
Veröffentlicht in: | Solar energy materials and solar cells 2020-08, Vol.213, p.110559, Article 110559 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 110559 |
container_title | Solar energy materials and solar cells |
container_volume | 213 |
creator | Akbulatov, Azat F. Martynenko, Vyacheslav M. Frolova, Lyubov A. Dremova, Nadezhda N. Zhidkov, Ivan Tsarev, Sergey A. Luchkin, Sergey Yu Kurmaev, Ernst Z. Aldoshin, Sergey M. Stevenson, Keith J. Troshin, Pavel A. |
description | We present a systematic study on intrinsic thermal stability of a series of complex lead halides APbX3, used as absorber materials in perovskite solar cells. Mechanistically, the perovskites APbX3 were shown to decompose under thermal stress conditions initially to form PbX2 and AX salts. Thermolysis of the latter yields multiple volatile products, which were analyzed by mass spectrometry. We reconfirmed the CH3I + NH3 decomposition route for MAPbI3 and observed for the first time CH4, ethylene and HI (formed from CH3I). In case of FAPbI3, the formation of 2-aminomalononitrile (not 1,3,5-triazine as reported recently) was revealed along with NH4I and HCN. Importantly, the stability of the lead halide perovskites shows a good correlation with the volatility of univalent cation halides (or their decomposition products) incorporated in their structure. In particular, MAPbX3 have the lowest stability since they incorporate the most volatile (or easy to decompose) methylammonium halides MAX. On the contrary, all-inorganic CsPbX3 show remarkable compositional stability since CsBr and CsI are non-volatile under the solar cell operation conditions. The established relationship and material decomposition pathways provide important guidelines for rational design of novel absorber materials for perovskite solar cells with improved thermal stability suitable for terrestrial and space applications.
[Display omitted]
•Intrinsic thermal stability of a series of lead halide perovskites was investigated.•Chemical composition of volatile products formed from APbI3 (A = MA, FA) was identified.•Mechanisms of thermal degradation of hybrid perovskites were revealed.•Thermal stability of complex lead halides increases in the order MAPbX3 |
doi_str_mv | 10.1016/j.solmat.2020.110559 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2442965710</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927024820301628</els_id><sourcerecordid>2442965710</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-8fc36bed6347b865330c6caa53473f5946213905d79f9524e9387b0d7a8dffe13</originalsourceid><addsrcrecordid>eNp9kEtLAzEQx4MoWKvfwMOC56157SMXoRQfhYIeFLyFbDKhWbebNUkr_fZuWc-ehhn-D-aH0C3BC4JJed8uou92Ki0opuOJ4KIQZ2hG6krkjIn6HM2woFWOKa8v0VWMLcaYlozP0Hrdp-D66HSWthB2qssMaL8bfHTJ-T4bVNr-qGPMvM06UCbbqs4ZyAYI_hC_XIKYLd-aT3aNLqzqItz8zTn6eHp8X73km9fn9Wq5yTVjPOW11axswIztVVOXBWNYl1qpYtyZLQQvKWECF6YSVhSUg2B11WBTqdpYC4TN0d2UOwT_vYeYZOv3oR8rJeWcirKoCB5VfFLp4GMMYOUQ3E6FoyRYnqDJVk7Q5AmanKCNtofJBuMHBwdBRu2g12BcAJ2k8e7_gF9tYHa-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2442965710</pqid></control><display><type>article</type><title>Intrinsic thermal decomposition pathways of lead halide perovskites APbX3</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Akbulatov, Azat F. ; Martynenko, Vyacheslav M. ; Frolova, Lyubov A. ; Dremova, Nadezhda N. ; Zhidkov, Ivan ; Tsarev, Sergey A. ; Luchkin, Sergey Yu ; Kurmaev, Ernst Z. ; Aldoshin, Sergey M. ; Stevenson, Keith J. ; Troshin, Pavel A.</creator><creatorcontrib>Akbulatov, Azat F. ; Martynenko, Vyacheslav M. ; Frolova, Lyubov A. ; Dremova, Nadezhda N. ; Zhidkov, Ivan ; Tsarev, Sergey A. ; Luchkin, Sergey Yu ; Kurmaev, Ernst Z. ; Aldoshin, Sergey M. ; Stevenson, Keith J. ; Troshin, Pavel A.</creatorcontrib><description>We present a systematic study on intrinsic thermal stability of a series of complex lead halides APbX3, used as absorber materials in perovskite solar cells. Mechanistically, the perovskites APbX3 were shown to decompose under thermal stress conditions initially to form PbX2 and AX salts. Thermolysis of the latter yields multiple volatile products, which were analyzed by mass spectrometry. We reconfirmed the CH3I + NH3 decomposition route for MAPbI3 and observed for the first time CH4, ethylene and HI (formed from CH3I). In case of FAPbI3, the formation of 2-aminomalononitrile (not 1,3,5-triazine as reported recently) was revealed along with NH4I and HCN. Importantly, the stability of the lead halide perovskites shows a good correlation with the volatility of univalent cation halides (or their decomposition products) incorporated in their structure. In particular, MAPbX3 have the lowest stability since they incorporate the most volatile (or easy to decompose) methylammonium halides MAX. On the contrary, all-inorganic CsPbX3 show remarkable compositional stability since CsBr and CsI are non-volatile under the solar cell operation conditions. The established relationship and material decomposition pathways provide important guidelines for rational design of novel absorber materials for perovskite solar cells with improved thermal stability suitable for terrestrial and space applications.
[Display omitted]
•Intrinsic thermal stability of a series of lead halide perovskites was investigated.•Chemical composition of volatile products formed from APbI3 (A = MA, FA) was identified.•Mechanisms of thermal degradation of hybrid perovskites were revealed.•Thermal stability of complex lead halides increases in the order MAPbX3<FAPbX3<CsPbX3.</description><identifier>ISSN: 0927-0248</identifier><identifier>EISSN: 1879-3398</identifier><identifier>DOI: 10.1016/j.solmat.2020.110559</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Absorbers (materials) ; Ammonia ; Cesium bromides ; Decomposition ; Decomposition pathways ; Halides ; Lead ; Lead compounds ; Mass spectrometry ; Mass spectroscopy ; Metal halides ; Perovskite solar cells ; Perovskites ; Photovoltaic cells ; Prebiotic HCN chemistry ; Salts ; Solar cells ; Space applications ; Terrestrial environments ; Thermal decomposition ; Thermal stability ; Thermal stress ; Triazine ; Volatility</subject><ispartof>Solar energy materials and solar cells, 2020-08, Vol.213, p.110559, Article 110559</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Aug 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-8fc36bed6347b865330c6caa53473f5946213905d79f9524e9387b0d7a8dffe13</citedby><cites>FETCH-LOGICAL-c334t-8fc36bed6347b865330c6caa53473f5946213905d79f9524e9387b0d7a8dffe13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.solmat.2020.110559$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Akbulatov, Azat F.</creatorcontrib><creatorcontrib>Martynenko, Vyacheslav M.</creatorcontrib><creatorcontrib>Frolova, Lyubov A.</creatorcontrib><creatorcontrib>Dremova, Nadezhda N.</creatorcontrib><creatorcontrib>Zhidkov, Ivan</creatorcontrib><creatorcontrib>Tsarev, Sergey A.</creatorcontrib><creatorcontrib>Luchkin, Sergey Yu</creatorcontrib><creatorcontrib>Kurmaev, Ernst Z.</creatorcontrib><creatorcontrib>Aldoshin, Sergey M.</creatorcontrib><creatorcontrib>Stevenson, Keith J.</creatorcontrib><creatorcontrib>Troshin, Pavel A.</creatorcontrib><title>Intrinsic thermal decomposition pathways of lead halide perovskites APbX3</title><title>Solar energy materials and solar cells</title><description>We present a systematic study on intrinsic thermal stability of a series of complex lead halides APbX3, used as absorber materials in perovskite solar cells. Mechanistically, the perovskites APbX3 were shown to decompose under thermal stress conditions initially to form PbX2 and AX salts. Thermolysis of the latter yields multiple volatile products, which were analyzed by mass spectrometry. We reconfirmed the CH3I + NH3 decomposition route for MAPbI3 and observed for the first time CH4, ethylene and HI (formed from CH3I). In case of FAPbI3, the formation of 2-aminomalononitrile (not 1,3,5-triazine as reported recently) was revealed along with NH4I and HCN. Importantly, the stability of the lead halide perovskites shows a good correlation with the volatility of univalent cation halides (or their decomposition products) incorporated in their structure. In particular, MAPbX3 have the lowest stability since they incorporate the most volatile (or easy to decompose) methylammonium halides MAX. On the contrary, all-inorganic CsPbX3 show remarkable compositional stability since CsBr and CsI are non-volatile under the solar cell operation conditions. The established relationship and material decomposition pathways provide important guidelines for rational design of novel absorber materials for perovskite solar cells with improved thermal stability suitable for terrestrial and space applications.
[Display omitted]
•Intrinsic thermal stability of a series of lead halide perovskites was investigated.•Chemical composition of volatile products formed from APbI3 (A = MA, FA) was identified.•Mechanisms of thermal degradation of hybrid perovskites were revealed.•Thermal stability of complex lead halides increases in the order MAPbX3<FAPbX3<CsPbX3.</description><subject>Absorbers (materials)</subject><subject>Ammonia</subject><subject>Cesium bromides</subject><subject>Decomposition</subject><subject>Decomposition pathways</subject><subject>Halides</subject><subject>Lead</subject><subject>Lead compounds</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Metal halides</subject><subject>Perovskite solar cells</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Prebiotic HCN chemistry</subject><subject>Salts</subject><subject>Solar cells</subject><subject>Space applications</subject><subject>Terrestrial environments</subject><subject>Thermal decomposition</subject><subject>Thermal stability</subject><subject>Thermal stress</subject><subject>Triazine</subject><subject>Volatility</subject><issn>0927-0248</issn><issn>1879-3398</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEQx4MoWKvfwMOC56157SMXoRQfhYIeFLyFbDKhWbebNUkr_fZuWc-ehhn-D-aH0C3BC4JJed8uou92Ki0opuOJ4KIQZ2hG6krkjIn6HM2woFWOKa8v0VWMLcaYlozP0Hrdp-D66HSWthB2qssMaL8bfHTJ-T4bVNr-qGPMvM06UCbbqs4ZyAYI_hC_XIKYLd-aT3aNLqzqItz8zTn6eHp8X73km9fn9Wq5yTVjPOW11axswIztVVOXBWNYl1qpYtyZLQQvKWECF6YSVhSUg2B11WBTqdpYC4TN0d2UOwT_vYeYZOv3oR8rJeWcirKoCB5VfFLp4GMMYOUQ3E6FoyRYnqDJVk7Q5AmanKCNtofJBuMHBwdBRu2g12BcAJ2k8e7_gF9tYHa-</recordid><startdate>20200815</startdate><enddate>20200815</enddate><creator>Akbulatov, Azat F.</creator><creator>Martynenko, Vyacheslav M.</creator><creator>Frolova, Lyubov A.</creator><creator>Dremova, Nadezhda N.</creator><creator>Zhidkov, Ivan</creator><creator>Tsarev, Sergey A.</creator><creator>Luchkin, Sergey Yu</creator><creator>Kurmaev, Ernst Z.</creator><creator>Aldoshin, Sergey M.</creator><creator>Stevenson, Keith J.</creator><creator>Troshin, Pavel A.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20200815</creationdate><title>Intrinsic thermal decomposition pathways of lead halide perovskites APbX3</title><author>Akbulatov, Azat F. ; Martynenko, Vyacheslav M. ; Frolova, Lyubov A. ; Dremova, Nadezhda N. ; Zhidkov, Ivan ; Tsarev, Sergey A. ; Luchkin, Sergey Yu ; Kurmaev, Ernst Z. ; Aldoshin, Sergey M. ; Stevenson, Keith J. ; Troshin, Pavel A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-8fc36bed6347b865330c6caa53473f5946213905d79f9524e9387b0d7a8dffe13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Absorbers (materials)</topic><topic>Ammonia</topic><topic>Cesium bromides</topic><topic>Decomposition</topic><topic>Decomposition pathways</topic><topic>Halides</topic><topic>Lead</topic><topic>Lead compounds</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Metal halides</topic><topic>Perovskite solar cells</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Prebiotic HCN chemistry</topic><topic>Salts</topic><topic>Solar cells</topic><topic>Space applications</topic><topic>Terrestrial environments</topic><topic>Thermal decomposition</topic><topic>Thermal stability</topic><topic>Thermal stress</topic><topic>Triazine</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akbulatov, Azat F.</creatorcontrib><creatorcontrib>Martynenko, Vyacheslav M.</creatorcontrib><creatorcontrib>Frolova, Lyubov A.</creatorcontrib><creatorcontrib>Dremova, Nadezhda N.</creatorcontrib><creatorcontrib>Zhidkov, Ivan</creatorcontrib><creatorcontrib>Tsarev, Sergey A.</creatorcontrib><creatorcontrib>Luchkin, Sergey Yu</creatorcontrib><creatorcontrib>Kurmaev, Ernst Z.</creatorcontrib><creatorcontrib>Aldoshin, Sergey M.</creatorcontrib><creatorcontrib>Stevenson, Keith J.</creatorcontrib><creatorcontrib>Troshin, Pavel A.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Solar energy materials and solar cells</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akbulatov, Azat F.</au><au>Martynenko, Vyacheslav M.</au><au>Frolova, Lyubov A.</au><au>Dremova, Nadezhda N.</au><au>Zhidkov, Ivan</au><au>Tsarev, Sergey A.</au><au>Luchkin, Sergey Yu</au><au>Kurmaev, Ernst Z.</au><au>Aldoshin, Sergey M.</au><au>Stevenson, Keith J.</au><au>Troshin, Pavel A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intrinsic thermal decomposition pathways of lead halide perovskites APbX3</atitle><jtitle>Solar energy materials and solar cells</jtitle><date>2020-08-15</date><risdate>2020</risdate><volume>213</volume><spage>110559</spage><pages>110559-</pages><artnum>110559</artnum><issn>0927-0248</issn><eissn>1879-3398</eissn><abstract>We present a systematic study on intrinsic thermal stability of a series of complex lead halides APbX3, used as absorber materials in perovskite solar cells. Mechanistically, the perovskites APbX3 were shown to decompose under thermal stress conditions initially to form PbX2 and AX salts. Thermolysis of the latter yields multiple volatile products, which were analyzed by mass spectrometry. We reconfirmed the CH3I + NH3 decomposition route for MAPbI3 and observed for the first time CH4, ethylene and HI (formed from CH3I). In case of FAPbI3, the formation of 2-aminomalononitrile (not 1,3,5-triazine as reported recently) was revealed along with NH4I and HCN. Importantly, the stability of the lead halide perovskites shows a good correlation with the volatility of univalent cation halides (or their decomposition products) incorporated in their structure. In particular, MAPbX3 have the lowest stability since they incorporate the most volatile (or easy to decompose) methylammonium halides MAX. On the contrary, all-inorganic CsPbX3 show remarkable compositional stability since CsBr and CsI are non-volatile under the solar cell operation conditions. The established relationship and material decomposition pathways provide important guidelines for rational design of novel absorber materials for perovskite solar cells with improved thermal stability suitable for terrestrial and space applications.
[Display omitted]
•Intrinsic thermal stability of a series of lead halide perovskites was investigated.•Chemical composition of volatile products formed from APbI3 (A = MA, FA) was identified.•Mechanisms of thermal degradation of hybrid perovskites were revealed.•Thermal stability of complex lead halides increases in the order MAPbX3<FAPbX3<CsPbX3.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.solmat.2020.110559</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0927-0248 |
ispartof | Solar energy materials and solar cells, 2020-08, Vol.213, p.110559, Article 110559 |
issn | 0927-0248 1879-3398 |
language | eng |
recordid | cdi_proquest_journals_2442965710 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Absorbers (materials) Ammonia Cesium bromides Decomposition Decomposition pathways Halides Lead Lead compounds Mass spectrometry Mass spectroscopy Metal halides Perovskite solar cells Perovskites Photovoltaic cells Prebiotic HCN chemistry Salts Solar cells Space applications Terrestrial environments Thermal decomposition Thermal stability Thermal stress Triazine Volatility |
title | Intrinsic thermal decomposition pathways of lead halide perovskites APbX3 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A12%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intrinsic%20thermal%20decomposition%20pathways%20of%20lead%20halide%20perovskites%20APbX3&rft.jtitle=Solar%20energy%20materials%20and%20solar%20cells&rft.au=Akbulatov,%20Azat%20F.&rft.date=2020-08-15&rft.volume=213&rft.spage=110559&rft.pages=110559-&rft.artnum=110559&rft.issn=0927-0248&rft.eissn=1879-3398&rft_id=info:doi/10.1016/j.solmat.2020.110559&rft_dat=%3Cproquest_cross%3E2442965710%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2442965710&rft_id=info:pmid/&rft_els_id=S0927024820301628&rfr_iscdi=true |