Intrinsic thermal decomposition pathways of lead halide perovskites APbX3

We present a systematic study on intrinsic thermal stability of a series of complex lead halides APbX3, used as absorber materials in perovskite solar cells. Mechanistically, the perovskites APbX3 were shown to decompose under thermal stress conditions initially to form PbX2 and AX salts. Thermolysi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solar energy materials and solar cells 2020-08, Vol.213, p.110559, Article 110559
Hauptverfasser: Akbulatov, Azat F., Martynenko, Vyacheslav M., Frolova, Lyubov A., Dremova, Nadezhda N., Zhidkov, Ivan, Tsarev, Sergey A., Luchkin, Sergey Yu, Kurmaev, Ernst Z., Aldoshin, Sergey M., Stevenson, Keith J., Troshin, Pavel A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 110559
container_title Solar energy materials and solar cells
container_volume 213
creator Akbulatov, Azat F.
Martynenko, Vyacheslav M.
Frolova, Lyubov A.
Dremova, Nadezhda N.
Zhidkov, Ivan
Tsarev, Sergey A.
Luchkin, Sergey Yu
Kurmaev, Ernst Z.
Aldoshin, Sergey M.
Stevenson, Keith J.
Troshin, Pavel A.
description We present a systematic study on intrinsic thermal stability of a series of complex lead halides APbX3, used as absorber materials in perovskite solar cells. Mechanistically, the perovskites APbX3 were shown to decompose under thermal stress conditions initially to form PbX2 and AX salts. Thermolysis of the latter yields multiple volatile products, which were analyzed by mass spectrometry. We reconfirmed the CH3I + NH3 decomposition route for MAPbI3 and observed for the first time CH4, ethylene and HI (formed from CH3I). In case of FAPbI3, the formation of 2-aminomalononitrile (not 1,3,5-triazine as reported recently) was revealed along with NH4I and HCN. Importantly, the stability of the lead halide perovskites shows a good correlation with the volatility of univalent cation halides (or their decomposition products) incorporated in their structure. In particular, MAPbX3 have the lowest stability since they incorporate the most volatile (or easy to decompose) methylammonium halides MAX. On the contrary, all-inorganic CsPbX3 show remarkable compositional stability since CsBr and CsI are non-volatile under the solar cell operation conditions. The established relationship and material decomposition pathways provide important guidelines for rational design of novel absorber materials for perovskite solar cells with improved thermal stability suitable for terrestrial and space applications. [Display omitted] •Intrinsic thermal stability of a series of lead halide perovskites was investigated.•Chemical composition of volatile products formed from APbI3 (A = MA, FA) was identified.•Mechanisms of thermal degradation of hybrid perovskites were revealed.•Thermal stability of complex lead halides increases in the order MAPbX3
doi_str_mv 10.1016/j.solmat.2020.110559
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2442965710</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927024820301628</els_id><sourcerecordid>2442965710</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-8fc36bed6347b865330c6caa53473f5946213905d79f9524e9387b0d7a8dffe13</originalsourceid><addsrcrecordid>eNp9kEtLAzEQx4MoWKvfwMOC56157SMXoRQfhYIeFLyFbDKhWbebNUkr_fZuWc-ehhn-D-aH0C3BC4JJed8uou92Ki0opuOJ4KIQZ2hG6krkjIn6HM2woFWOKa8v0VWMLcaYlozP0Hrdp-D66HSWthB2qssMaL8bfHTJ-T4bVNr-qGPMvM06UCbbqs4ZyAYI_hC_XIKYLd-aT3aNLqzqItz8zTn6eHp8X73km9fn9Wq5yTVjPOW11axswIztVVOXBWNYl1qpYtyZLQQvKWECF6YSVhSUg2B11WBTqdpYC4TN0d2UOwT_vYeYZOv3oR8rJeWcirKoCB5VfFLp4GMMYOUQ3E6FoyRYnqDJVk7Q5AmanKCNtofJBuMHBwdBRu2g12BcAJ2k8e7_gF9tYHa-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2442965710</pqid></control><display><type>article</type><title>Intrinsic thermal decomposition pathways of lead halide perovskites APbX3</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Akbulatov, Azat F. ; Martynenko, Vyacheslav M. ; Frolova, Lyubov A. ; Dremova, Nadezhda N. ; Zhidkov, Ivan ; Tsarev, Sergey A. ; Luchkin, Sergey Yu ; Kurmaev, Ernst Z. ; Aldoshin, Sergey M. ; Stevenson, Keith J. ; Troshin, Pavel A.</creator><creatorcontrib>Akbulatov, Azat F. ; Martynenko, Vyacheslav M. ; Frolova, Lyubov A. ; Dremova, Nadezhda N. ; Zhidkov, Ivan ; Tsarev, Sergey A. ; Luchkin, Sergey Yu ; Kurmaev, Ernst Z. ; Aldoshin, Sergey M. ; Stevenson, Keith J. ; Troshin, Pavel A.</creatorcontrib><description>We present a systematic study on intrinsic thermal stability of a series of complex lead halides APbX3, used as absorber materials in perovskite solar cells. Mechanistically, the perovskites APbX3 were shown to decompose under thermal stress conditions initially to form PbX2 and AX salts. Thermolysis of the latter yields multiple volatile products, which were analyzed by mass spectrometry. We reconfirmed the CH3I + NH3 decomposition route for MAPbI3 and observed for the first time CH4, ethylene and HI (formed from CH3I). In case of FAPbI3, the formation of 2-aminomalononitrile (not 1,3,5-triazine as reported recently) was revealed along with NH4I and HCN. Importantly, the stability of the lead halide perovskites shows a good correlation with the volatility of univalent cation halides (or their decomposition products) incorporated in their structure. In particular, MAPbX3 have the lowest stability since they incorporate the most volatile (or easy to decompose) methylammonium halides MAX. On the contrary, all-inorganic CsPbX3 show remarkable compositional stability since CsBr and CsI are non-volatile under the solar cell operation conditions. The established relationship and material decomposition pathways provide important guidelines for rational design of novel absorber materials for perovskite solar cells with improved thermal stability suitable for terrestrial and space applications. [Display omitted] •Intrinsic thermal stability of a series of lead halide perovskites was investigated.•Chemical composition of volatile products formed from APbI3 (A = MA, FA) was identified.•Mechanisms of thermal degradation of hybrid perovskites were revealed.•Thermal stability of complex lead halides increases in the order MAPbX3&lt;FAPbX3&lt;CsPbX3.</description><identifier>ISSN: 0927-0248</identifier><identifier>EISSN: 1879-3398</identifier><identifier>DOI: 10.1016/j.solmat.2020.110559</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Absorbers (materials) ; Ammonia ; Cesium bromides ; Decomposition ; Decomposition pathways ; Halides ; Lead ; Lead compounds ; Mass spectrometry ; Mass spectroscopy ; Metal halides ; Perovskite solar cells ; Perovskites ; Photovoltaic cells ; Prebiotic HCN chemistry ; Salts ; Solar cells ; Space applications ; Terrestrial environments ; Thermal decomposition ; Thermal stability ; Thermal stress ; Triazine ; Volatility</subject><ispartof>Solar energy materials and solar cells, 2020-08, Vol.213, p.110559, Article 110559</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Aug 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-8fc36bed6347b865330c6caa53473f5946213905d79f9524e9387b0d7a8dffe13</citedby><cites>FETCH-LOGICAL-c334t-8fc36bed6347b865330c6caa53473f5946213905d79f9524e9387b0d7a8dffe13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.solmat.2020.110559$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Akbulatov, Azat F.</creatorcontrib><creatorcontrib>Martynenko, Vyacheslav M.</creatorcontrib><creatorcontrib>Frolova, Lyubov A.</creatorcontrib><creatorcontrib>Dremova, Nadezhda N.</creatorcontrib><creatorcontrib>Zhidkov, Ivan</creatorcontrib><creatorcontrib>Tsarev, Sergey A.</creatorcontrib><creatorcontrib>Luchkin, Sergey Yu</creatorcontrib><creatorcontrib>Kurmaev, Ernst Z.</creatorcontrib><creatorcontrib>Aldoshin, Sergey M.</creatorcontrib><creatorcontrib>Stevenson, Keith J.</creatorcontrib><creatorcontrib>Troshin, Pavel A.</creatorcontrib><title>Intrinsic thermal decomposition pathways of lead halide perovskites APbX3</title><title>Solar energy materials and solar cells</title><description>We present a systematic study on intrinsic thermal stability of a series of complex lead halides APbX3, used as absorber materials in perovskite solar cells. Mechanistically, the perovskites APbX3 were shown to decompose under thermal stress conditions initially to form PbX2 and AX salts. Thermolysis of the latter yields multiple volatile products, which were analyzed by mass spectrometry. We reconfirmed the CH3I + NH3 decomposition route for MAPbI3 and observed for the first time CH4, ethylene and HI (formed from CH3I). In case of FAPbI3, the formation of 2-aminomalononitrile (not 1,3,5-triazine as reported recently) was revealed along with NH4I and HCN. Importantly, the stability of the lead halide perovskites shows a good correlation with the volatility of univalent cation halides (or their decomposition products) incorporated in their structure. In particular, MAPbX3 have the lowest stability since they incorporate the most volatile (or easy to decompose) methylammonium halides MAX. On the contrary, all-inorganic CsPbX3 show remarkable compositional stability since CsBr and CsI are non-volatile under the solar cell operation conditions. The established relationship and material decomposition pathways provide important guidelines for rational design of novel absorber materials for perovskite solar cells with improved thermal stability suitable for terrestrial and space applications. [Display omitted] •Intrinsic thermal stability of a series of lead halide perovskites was investigated.•Chemical composition of volatile products formed from APbI3 (A = MA, FA) was identified.•Mechanisms of thermal degradation of hybrid perovskites were revealed.•Thermal stability of complex lead halides increases in the order MAPbX3&lt;FAPbX3&lt;CsPbX3.</description><subject>Absorbers (materials)</subject><subject>Ammonia</subject><subject>Cesium bromides</subject><subject>Decomposition</subject><subject>Decomposition pathways</subject><subject>Halides</subject><subject>Lead</subject><subject>Lead compounds</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Metal halides</subject><subject>Perovskite solar cells</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Prebiotic HCN chemistry</subject><subject>Salts</subject><subject>Solar cells</subject><subject>Space applications</subject><subject>Terrestrial environments</subject><subject>Thermal decomposition</subject><subject>Thermal stability</subject><subject>Thermal stress</subject><subject>Triazine</subject><subject>Volatility</subject><issn>0927-0248</issn><issn>1879-3398</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEQx4MoWKvfwMOC56157SMXoRQfhYIeFLyFbDKhWbebNUkr_fZuWc-ehhn-D-aH0C3BC4JJed8uou92Ki0opuOJ4KIQZ2hG6krkjIn6HM2woFWOKa8v0VWMLcaYlozP0Hrdp-D66HSWthB2qssMaL8bfHTJ-T4bVNr-qGPMvM06UCbbqs4ZyAYI_hC_XIKYLd-aT3aNLqzqItz8zTn6eHp8X73km9fn9Wq5yTVjPOW11axswIztVVOXBWNYl1qpYtyZLQQvKWECF6YSVhSUg2B11WBTqdpYC4TN0d2UOwT_vYeYZOv3oR8rJeWcirKoCB5VfFLp4GMMYOUQ3E6FoyRYnqDJVk7Q5AmanKCNtofJBuMHBwdBRu2g12BcAJ2k8e7_gF9tYHa-</recordid><startdate>20200815</startdate><enddate>20200815</enddate><creator>Akbulatov, Azat F.</creator><creator>Martynenko, Vyacheslav M.</creator><creator>Frolova, Lyubov A.</creator><creator>Dremova, Nadezhda N.</creator><creator>Zhidkov, Ivan</creator><creator>Tsarev, Sergey A.</creator><creator>Luchkin, Sergey Yu</creator><creator>Kurmaev, Ernst Z.</creator><creator>Aldoshin, Sergey M.</creator><creator>Stevenson, Keith J.</creator><creator>Troshin, Pavel A.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20200815</creationdate><title>Intrinsic thermal decomposition pathways of lead halide perovskites APbX3</title><author>Akbulatov, Azat F. ; Martynenko, Vyacheslav M. ; Frolova, Lyubov A. ; Dremova, Nadezhda N. ; Zhidkov, Ivan ; Tsarev, Sergey A. ; Luchkin, Sergey Yu ; Kurmaev, Ernst Z. ; Aldoshin, Sergey M. ; Stevenson, Keith J. ; Troshin, Pavel A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-8fc36bed6347b865330c6caa53473f5946213905d79f9524e9387b0d7a8dffe13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Absorbers (materials)</topic><topic>Ammonia</topic><topic>Cesium bromides</topic><topic>Decomposition</topic><topic>Decomposition pathways</topic><topic>Halides</topic><topic>Lead</topic><topic>Lead compounds</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Metal halides</topic><topic>Perovskite solar cells</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Prebiotic HCN chemistry</topic><topic>Salts</topic><topic>Solar cells</topic><topic>Space applications</topic><topic>Terrestrial environments</topic><topic>Thermal decomposition</topic><topic>Thermal stability</topic><topic>Thermal stress</topic><topic>Triazine</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akbulatov, Azat F.</creatorcontrib><creatorcontrib>Martynenko, Vyacheslav M.</creatorcontrib><creatorcontrib>Frolova, Lyubov A.</creatorcontrib><creatorcontrib>Dremova, Nadezhda N.</creatorcontrib><creatorcontrib>Zhidkov, Ivan</creatorcontrib><creatorcontrib>Tsarev, Sergey A.</creatorcontrib><creatorcontrib>Luchkin, Sergey Yu</creatorcontrib><creatorcontrib>Kurmaev, Ernst Z.</creatorcontrib><creatorcontrib>Aldoshin, Sergey M.</creatorcontrib><creatorcontrib>Stevenson, Keith J.</creatorcontrib><creatorcontrib>Troshin, Pavel A.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Solar energy materials and solar cells</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akbulatov, Azat F.</au><au>Martynenko, Vyacheslav M.</au><au>Frolova, Lyubov A.</au><au>Dremova, Nadezhda N.</au><au>Zhidkov, Ivan</au><au>Tsarev, Sergey A.</au><au>Luchkin, Sergey Yu</au><au>Kurmaev, Ernst Z.</au><au>Aldoshin, Sergey M.</au><au>Stevenson, Keith J.</au><au>Troshin, Pavel A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intrinsic thermal decomposition pathways of lead halide perovskites APbX3</atitle><jtitle>Solar energy materials and solar cells</jtitle><date>2020-08-15</date><risdate>2020</risdate><volume>213</volume><spage>110559</spage><pages>110559-</pages><artnum>110559</artnum><issn>0927-0248</issn><eissn>1879-3398</eissn><abstract>We present a systematic study on intrinsic thermal stability of a series of complex lead halides APbX3, used as absorber materials in perovskite solar cells. Mechanistically, the perovskites APbX3 were shown to decompose under thermal stress conditions initially to form PbX2 and AX salts. Thermolysis of the latter yields multiple volatile products, which were analyzed by mass spectrometry. We reconfirmed the CH3I + NH3 decomposition route for MAPbI3 and observed for the first time CH4, ethylene and HI (formed from CH3I). In case of FAPbI3, the formation of 2-aminomalononitrile (not 1,3,5-triazine as reported recently) was revealed along with NH4I and HCN. Importantly, the stability of the lead halide perovskites shows a good correlation with the volatility of univalent cation halides (or their decomposition products) incorporated in their structure. In particular, MAPbX3 have the lowest stability since they incorporate the most volatile (or easy to decompose) methylammonium halides MAX. On the contrary, all-inorganic CsPbX3 show remarkable compositional stability since CsBr and CsI are non-volatile under the solar cell operation conditions. The established relationship and material decomposition pathways provide important guidelines for rational design of novel absorber materials for perovskite solar cells with improved thermal stability suitable for terrestrial and space applications. [Display omitted] •Intrinsic thermal stability of a series of lead halide perovskites was investigated.•Chemical composition of volatile products formed from APbI3 (A = MA, FA) was identified.•Mechanisms of thermal degradation of hybrid perovskites were revealed.•Thermal stability of complex lead halides increases in the order MAPbX3&lt;FAPbX3&lt;CsPbX3.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.solmat.2020.110559</doi></addata></record>
fulltext fulltext
identifier ISSN: 0927-0248
ispartof Solar energy materials and solar cells, 2020-08, Vol.213, p.110559, Article 110559
issn 0927-0248
1879-3398
language eng
recordid cdi_proquest_journals_2442965710
source ScienceDirect Journals (5 years ago - present)
subjects Absorbers (materials)
Ammonia
Cesium bromides
Decomposition
Decomposition pathways
Halides
Lead
Lead compounds
Mass spectrometry
Mass spectroscopy
Metal halides
Perovskite solar cells
Perovskites
Photovoltaic cells
Prebiotic HCN chemistry
Salts
Solar cells
Space applications
Terrestrial environments
Thermal decomposition
Thermal stability
Thermal stress
Triazine
Volatility
title Intrinsic thermal decomposition pathways of lead halide perovskites APbX3
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A12%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intrinsic%20thermal%20decomposition%20pathways%20of%20lead%20halide%20perovskites%20APbX3&rft.jtitle=Solar%20energy%20materials%20and%20solar%20cells&rft.au=Akbulatov,%20Azat%20F.&rft.date=2020-08-15&rft.volume=213&rft.spage=110559&rft.pages=110559-&rft.artnum=110559&rft.issn=0927-0248&rft.eissn=1879-3398&rft_id=info:doi/10.1016/j.solmat.2020.110559&rft_dat=%3Cproquest_cross%3E2442965710%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2442965710&rft_id=info:pmid/&rft_els_id=S0927024820301628&rfr_iscdi=true