Chemical complexity, microstructure and martensitic transformation in high entropy shape memory alloys

High entropy shape memory alloys (HESMAs) represent a relatively young class of functional materials. They show a reversible martensitic phase transformation which allows to exploit shape memory effects at relatively high temperatures. HESMAs represent ordered complex solid-solutions. Their high tem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Intermetallics 2020-07, Vol.122, p.106792, Article 106792
Hauptverfasser: Piorunek, David, Frenzel, Jan, Jöns, Niels, Somsen, Christoph, Eggeler, Gunther
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 106792
container_title Intermetallics
container_volume 122
creator Piorunek, David
Frenzel, Jan
Jöns, Niels
Somsen, Christoph
Eggeler, Gunther
description High entropy shape memory alloys (HESMAs) represent a relatively young class of functional materials. They show a reversible martensitic phase transformation which allows to exploit shape memory effects at relatively high temperatures. HESMAs represent ordered complex solid-solutions. Their high temperature phase is of B2 type, and various elements (e.g. Ni, Cu, Ti, Zr, Hf) occupy sites in specific sub-lattices. In the present work, we study the processing and the functional properties of HESMAs. We study effects of chemical complexity on solidification microstructures and martensitic transformations. Binary, ternary, quaternary, quinary and senary model alloys were investigated using advanced microstructural and thermal characterization methods. The results show that element partitioning during solidification results in a redistribution of individual alloy elements in dendritic/interdendritic regions. Surprisingly, the atomic ratios of the two groups of elements which occupy the Ni- (first group: Ni, Cu and Pd) and Ti-sub-lattice (second group: Ti, Zr, Hf) are maintained. This allows the material to form martensite throughout its heterogeneous microstructure. The effect of chemical complexity/composition on martensite start temperatures, MS, is discussed on the basis of valence electron concentrations, cV. Some of the alloys fall into MS(cV)-regimes which are uncommon for classical Ni-Ti-based shape memory alloys. In the present work, a new HESMA of type NiCuPdTiZrHf was identified which has the potential to provide maximum shape memory strains close to 15%. •Characterization of the effect of chemical complexity on cast microstructures.•New results on element partitioning during solidification.•Dependence of martensite start temperatures and latent heats on alloy chemistry.•Introduction of a new NiCuPdTiZrHf high entropy shape memory alloy.
doi_str_mv 10.1016/j.intermet.2020.106792
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2442964747</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0966979520301552</els_id><sourcerecordid>2442964747</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-257ecdbb5aa2af8e09848affe24078b8789fc271af186d81c1052b8d5c70f0a83</originalsourceid><addsrcrecordid>eNqFkEtLxDAUhYMoOD7-ggTc2jHJtE26UwZfMOBG1yFNb2xKm9QkFfvv7TC6dnXhcM65nA-hK0rWlNDytltblyAMkNaMsL1Y8oodoRUVvMoIo-UxWpGqLLOKV8UpOouxI4RysilWyGxbGKxWPdZ-GHv4tmm-wYsSfExh0mkKgJVr8KBCAhdtshqnoFw0PgwqWe-wdbi1Hy0Gl4IfZxxbNQIeYPBhxqrv_Rwv0IlRfYTL33uO3h8f3rbP2e716WV7v8v0RoiUsYKDbuq6UIopI4BUIhfKGGA54aIWXFRGM06VoaJsBNWUFKwWTaE5MUSJzTm6PvSOwX9OEJPs_BTc8lKyPGdVmfOcL67y4NqvjAGMHINdBs6SErlnKjv5x1TumcoD0yV4dwjCsuHLQpBRW3AaGhtAJ9l4-1_FD7Ojhlg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2442964747</pqid></control><display><type>article</type><title>Chemical complexity, microstructure and martensitic transformation in high entropy shape memory alloys</title><source>Elsevier ScienceDirect Journals</source><creator>Piorunek, David ; Frenzel, Jan ; Jöns, Niels ; Somsen, Christoph ; Eggeler, Gunther</creator><creatorcontrib>Piorunek, David ; Frenzel, Jan ; Jöns, Niels ; Somsen, Christoph ; Eggeler, Gunther</creatorcontrib><description>High entropy shape memory alloys (HESMAs) represent a relatively young class of functional materials. They show a reversible martensitic phase transformation which allows to exploit shape memory effects at relatively high temperatures. HESMAs represent ordered complex solid-solutions. Their high temperature phase is of B2 type, and various elements (e.g. Ni, Cu, Ti, Zr, Hf) occupy sites in specific sub-lattices. In the present work, we study the processing and the functional properties of HESMAs. We study effects of chemical complexity on solidification microstructures and martensitic transformations. Binary, ternary, quaternary, quinary and senary model alloys were investigated using advanced microstructural and thermal characterization methods. The results show that element partitioning during solidification results in a redistribution of individual alloy elements in dendritic/interdendritic regions. Surprisingly, the atomic ratios of the two groups of elements which occupy the Ni- (first group: Ni, Cu and Pd) and Ti-sub-lattice (second group: Ti, Zr, Hf) are maintained. This allows the material to form martensite throughout its heterogeneous microstructure. The effect of chemical complexity/composition on martensite start temperatures, MS, is discussed on the basis of valence electron concentrations, cV. Some of the alloys fall into MS(cV)-regimes which are uncommon for classical Ni-Ti-based shape memory alloys. In the present work, a new HESMA of type NiCuPdTiZrHf was identified which has the potential to provide maximum shape memory strains close to 15%. •Characterization of the effect of chemical complexity on cast microstructures.•New results on element partitioning during solidification.•Dependence of martensite start temperatures and latent heats on alloy chemistry.•Introduction of a new NiCuPdTiZrHf high entropy shape memory alloy.</description><identifier>ISSN: 0966-9795</identifier><identifier>EISSN: 1879-0216</identifier><identifier>DOI: 10.1016/j.intermet.2020.106792</identifier><language>eng</language><publisher>Barking: Elsevier Ltd</publisher><subject>Alloying elements ; Biodegradable materials ; Casting ; Chemical composition ; Complexity ; Composition effects ; Copper ; Functional materials ; Hafnium ; Heat of transformation ; High entropy alloys, shape memory alloys ; High temperature ; Lattices ; Martensite ; Martensitic structure, microstructure ; Martensitic transformation ; Martensitic transformations ; Microstructure ; Nickel ; Phase transitions ; Shape effects ; Shape memory alloys ; Solid solutions ; Solidification ; Thermodynamic properties ; Zirconium</subject><ispartof>Intermetallics, 2020-07, Vol.122, p.106792, Article 106792</ispartof><rights>2020 The Authors</rights><rights>Copyright Elsevier BV Jul 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-257ecdbb5aa2af8e09848affe24078b8789fc271af186d81c1052b8d5c70f0a83</citedby><cites>FETCH-LOGICAL-c388t-257ecdbb5aa2af8e09848affe24078b8789fc271af186d81c1052b8d5c70f0a83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0966979520301552$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Piorunek, David</creatorcontrib><creatorcontrib>Frenzel, Jan</creatorcontrib><creatorcontrib>Jöns, Niels</creatorcontrib><creatorcontrib>Somsen, Christoph</creatorcontrib><creatorcontrib>Eggeler, Gunther</creatorcontrib><title>Chemical complexity, microstructure and martensitic transformation in high entropy shape memory alloys</title><title>Intermetallics</title><description>High entropy shape memory alloys (HESMAs) represent a relatively young class of functional materials. They show a reversible martensitic phase transformation which allows to exploit shape memory effects at relatively high temperatures. HESMAs represent ordered complex solid-solutions. Their high temperature phase is of B2 type, and various elements (e.g. Ni, Cu, Ti, Zr, Hf) occupy sites in specific sub-lattices. In the present work, we study the processing and the functional properties of HESMAs. We study effects of chemical complexity on solidification microstructures and martensitic transformations. Binary, ternary, quaternary, quinary and senary model alloys were investigated using advanced microstructural and thermal characterization methods. The results show that element partitioning during solidification results in a redistribution of individual alloy elements in dendritic/interdendritic regions. Surprisingly, the atomic ratios of the two groups of elements which occupy the Ni- (first group: Ni, Cu and Pd) and Ti-sub-lattice (second group: Ti, Zr, Hf) are maintained. This allows the material to form martensite throughout its heterogeneous microstructure. The effect of chemical complexity/composition on martensite start temperatures, MS, is discussed on the basis of valence electron concentrations, cV. Some of the alloys fall into MS(cV)-regimes which are uncommon for classical Ni-Ti-based shape memory alloys. In the present work, a new HESMA of type NiCuPdTiZrHf was identified which has the potential to provide maximum shape memory strains close to 15%. •Characterization of the effect of chemical complexity on cast microstructures.•New results on element partitioning during solidification.•Dependence of martensite start temperatures and latent heats on alloy chemistry.•Introduction of a new NiCuPdTiZrHf high entropy shape memory alloy.</description><subject>Alloying elements</subject><subject>Biodegradable materials</subject><subject>Casting</subject><subject>Chemical composition</subject><subject>Complexity</subject><subject>Composition effects</subject><subject>Copper</subject><subject>Functional materials</subject><subject>Hafnium</subject><subject>Heat of transformation</subject><subject>High entropy alloys, shape memory alloys</subject><subject>High temperature</subject><subject>Lattices</subject><subject>Martensite</subject><subject>Martensitic structure, microstructure</subject><subject>Martensitic transformation</subject><subject>Martensitic transformations</subject><subject>Microstructure</subject><subject>Nickel</subject><subject>Phase transitions</subject><subject>Shape effects</subject><subject>Shape memory alloys</subject><subject>Solid solutions</subject><subject>Solidification</subject><subject>Thermodynamic properties</subject><subject>Zirconium</subject><issn>0966-9795</issn><issn>1879-0216</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLxDAUhYMoOD7-ggTc2jHJtE26UwZfMOBG1yFNb2xKm9QkFfvv7TC6dnXhcM65nA-hK0rWlNDytltblyAMkNaMsL1Y8oodoRUVvMoIo-UxWpGqLLOKV8UpOouxI4RysilWyGxbGKxWPdZ-GHv4tmm-wYsSfExh0mkKgJVr8KBCAhdtshqnoFw0PgwqWe-wdbi1Hy0Gl4IfZxxbNQIeYPBhxqrv_Rwv0IlRfYTL33uO3h8f3rbP2e716WV7v8v0RoiUsYKDbuq6UIopI4BUIhfKGGA54aIWXFRGM06VoaJsBNWUFKwWTaE5MUSJzTm6PvSOwX9OEJPs_BTc8lKyPGdVmfOcL67y4NqvjAGMHINdBs6SErlnKjv5x1TumcoD0yV4dwjCsuHLQpBRW3AaGhtAJ9l4-1_FD7Ojhlg</recordid><startdate>202007</startdate><enddate>202007</enddate><creator>Piorunek, David</creator><creator>Frenzel, Jan</creator><creator>Jöns, Niels</creator><creator>Somsen, Christoph</creator><creator>Eggeler, Gunther</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>202007</creationdate><title>Chemical complexity, microstructure and martensitic transformation in high entropy shape memory alloys</title><author>Piorunek, David ; Frenzel, Jan ; Jöns, Niels ; Somsen, Christoph ; Eggeler, Gunther</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-257ecdbb5aa2af8e09848affe24078b8789fc271af186d81c1052b8d5c70f0a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alloying elements</topic><topic>Biodegradable materials</topic><topic>Casting</topic><topic>Chemical composition</topic><topic>Complexity</topic><topic>Composition effects</topic><topic>Copper</topic><topic>Functional materials</topic><topic>Hafnium</topic><topic>Heat of transformation</topic><topic>High entropy alloys, shape memory alloys</topic><topic>High temperature</topic><topic>Lattices</topic><topic>Martensite</topic><topic>Martensitic structure, microstructure</topic><topic>Martensitic transformation</topic><topic>Martensitic transformations</topic><topic>Microstructure</topic><topic>Nickel</topic><topic>Phase transitions</topic><topic>Shape effects</topic><topic>Shape memory alloys</topic><topic>Solid solutions</topic><topic>Solidification</topic><topic>Thermodynamic properties</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Piorunek, David</creatorcontrib><creatorcontrib>Frenzel, Jan</creatorcontrib><creatorcontrib>Jöns, Niels</creatorcontrib><creatorcontrib>Somsen, Christoph</creatorcontrib><creatorcontrib>Eggeler, Gunther</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Intermetallics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Piorunek, David</au><au>Frenzel, Jan</au><au>Jöns, Niels</au><au>Somsen, Christoph</au><au>Eggeler, Gunther</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemical complexity, microstructure and martensitic transformation in high entropy shape memory alloys</atitle><jtitle>Intermetallics</jtitle><date>2020-07</date><risdate>2020</risdate><volume>122</volume><spage>106792</spage><pages>106792-</pages><artnum>106792</artnum><issn>0966-9795</issn><eissn>1879-0216</eissn><abstract>High entropy shape memory alloys (HESMAs) represent a relatively young class of functional materials. They show a reversible martensitic phase transformation which allows to exploit shape memory effects at relatively high temperatures. HESMAs represent ordered complex solid-solutions. Their high temperature phase is of B2 type, and various elements (e.g. Ni, Cu, Ti, Zr, Hf) occupy sites in specific sub-lattices. In the present work, we study the processing and the functional properties of HESMAs. We study effects of chemical complexity on solidification microstructures and martensitic transformations. Binary, ternary, quaternary, quinary and senary model alloys were investigated using advanced microstructural and thermal characterization methods. The results show that element partitioning during solidification results in a redistribution of individual alloy elements in dendritic/interdendritic regions. Surprisingly, the atomic ratios of the two groups of elements which occupy the Ni- (first group: Ni, Cu and Pd) and Ti-sub-lattice (second group: Ti, Zr, Hf) are maintained. This allows the material to form martensite throughout its heterogeneous microstructure. The effect of chemical complexity/composition on martensite start temperatures, MS, is discussed on the basis of valence electron concentrations, cV. Some of the alloys fall into MS(cV)-regimes which are uncommon for classical Ni-Ti-based shape memory alloys. In the present work, a new HESMA of type NiCuPdTiZrHf was identified which has the potential to provide maximum shape memory strains close to 15%. •Characterization of the effect of chemical complexity on cast microstructures.•New results on element partitioning during solidification.•Dependence of martensite start temperatures and latent heats on alloy chemistry.•Introduction of a new NiCuPdTiZrHf high entropy shape memory alloy.</abstract><cop>Barking</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.intermet.2020.106792</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0966-9795
ispartof Intermetallics, 2020-07, Vol.122, p.106792, Article 106792
issn 0966-9795
1879-0216
language eng
recordid cdi_proquest_journals_2442964747
source Elsevier ScienceDirect Journals
subjects Alloying elements
Biodegradable materials
Casting
Chemical composition
Complexity
Composition effects
Copper
Functional materials
Hafnium
Heat of transformation
High entropy alloys, shape memory alloys
High temperature
Lattices
Martensite
Martensitic structure, microstructure
Martensitic transformation
Martensitic transformations
Microstructure
Nickel
Phase transitions
Shape effects
Shape memory alloys
Solid solutions
Solidification
Thermodynamic properties
Zirconium
title Chemical complexity, microstructure and martensitic transformation in high entropy shape memory alloys
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T11%3A03%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemical%20complexity,%20microstructure%20and%20martensitic%20transformation%20in%20high%20entropy%20shape%20memory%20alloys&rft.jtitle=Intermetallics&rft.au=Piorunek,%20David&rft.date=2020-07&rft.volume=122&rft.spage=106792&rft.pages=106792-&rft.artnum=106792&rft.issn=0966-9795&rft.eissn=1879-0216&rft_id=info:doi/10.1016/j.intermet.2020.106792&rft_dat=%3Cproquest_cross%3E2442964747%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2442964747&rft_id=info:pmid/&rft_els_id=S0966979520301552&rfr_iscdi=true