Ag2Cu2O3 – a catalyst template material for selective electroreduction of CO to C2+ products

Although recent years have brought significant progress within the field of electrochemical conversion of CO2 and CO to value-added chemicals, many more challenges need to be overcome for this technology to be implemented on an industrial level. Rational design of catalyst materials that would enabl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & environmental science 2020-09, Vol.13 (9), p.2993-3006
Hauptverfasser: Martić, Nemanja, Reller, Christian, Macauley, Chandra, Löffler, Mario, Reichert, Andreas M, Reichbauer, Thomas, Kim-Marie Vetter, Schmid, Bernhard, McLaughlin, David, Leidinger, Paul, Reinisch, David, Vogl, Christoph, Mayrhofer, Karl J J, Katsounaros, Ioannis, Schmid, Günter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3006
container_issue 9
container_start_page 2993
container_title Energy & environmental science
container_volume 13
creator Martić, Nemanja
Reller, Christian
Macauley, Chandra
Löffler, Mario
Reichert, Andreas M
Reichbauer, Thomas
Kim-Marie Vetter
Schmid, Bernhard
McLaughlin, David
Leidinger, Paul
Reinisch, David
Vogl, Christoph
Mayrhofer, Karl J J
Katsounaros, Ioannis
Schmid, Günter
description Although recent years have brought significant progress within the field of electrochemical conversion of CO2 and CO to value-added chemicals, many more challenges need to be overcome for this technology to be implemented on an industrial level. Rational design of catalyst materials that would enable selective production of desired products at industrially relevant current densities (>200 mA cm−2) is most certainly one of them. Here, we introduce Ag2Cu2O3, a mixed-metal oxide, as a starting template material for efficient electroreduction of CO to C2+ products. By combining results from electrochemical real-time mass spectrometry (EC-RTMS), XRD and XPS we confirmed the template nature of Ag2Cu2O3 and in situ formation of a fully reduced CuAg bimetallic material during the first minutes of electrolysis. Electrochemical screening of the catalyst revealed significantly varying product distributions when CO2 (CO2RR) and CO (CORR) where used as feed gases. During CORR, a faradaic efficiency close to 92% towards C2+ products at 600 mA cm−2 was achieved. On the other hand, during CO2RR, CO was found to be the main product under all tested current densities, reaching a maximum faradaic efficiency of 68%. XPS valence band spectra of the bimetallic surface originating from Ag2Cu2O3 showed that its d-band electronic structure is noticeably different compared to metallic Ag and Cu, a finding we link to the observed product distributions. Finally, additional microscopy characterization techniques were used to investigate the observed surface reconstruction of the catalyst material under reaction conditions.
doi_str_mv 10.1039/d0ee01100b
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2442838762</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2442838762</sourcerecordid><originalsourceid>FETCH-LOGICAL-g220t-6465865f2d6927d55e3c459d3235fae40c1fd0452e727f82f5071cb4f7f2c1b13</originalsourceid><addsrcrecordid>eNo1jstOwzAURC0EEqWw4QsssUSB6-tXsqwiXlKlbGBL5TrXVau0LrGDxI5_4A_5EsJrMzM6i5lh7FzAlQBZXbdABEIALA_YRFitCm3BHP5nU-ExO0lpA2AQbDVhz7MV1gM2kn--f3DHvcuue0uZZ9ruO5eJb0fp167jIfY8UUc-r1-J_4Q-9tQOI4g7HgOvG54jr_GS7_v4zdMpOwquS3T251P2dHvzWN8X8-buoZ7NixUi5MIoo0ujA7bjQ9tqTdIrXbUSpQ6OFHgRWlAayaINJQYNVvilCjagF0shp-zit3ccfhko5cUmDv1unFygUljK0hqUX5i5VIc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2442838762</pqid></control><display><type>article</type><title>Ag2Cu2O3 – a catalyst template material for selective electroreduction of CO to C2+ products</title><source>Royal Society Of Chemistry Journals</source><creator>Martić, Nemanja ; Reller, Christian ; Macauley, Chandra ; Löffler, Mario ; Reichert, Andreas M ; Reichbauer, Thomas ; Kim-Marie Vetter ; Schmid, Bernhard ; McLaughlin, David ; Leidinger, Paul ; Reinisch, David ; Vogl, Christoph ; Mayrhofer, Karl J J ; Katsounaros, Ioannis ; Schmid, Günter</creator><creatorcontrib>Martić, Nemanja ; Reller, Christian ; Macauley, Chandra ; Löffler, Mario ; Reichert, Andreas M ; Reichbauer, Thomas ; Kim-Marie Vetter ; Schmid, Bernhard ; McLaughlin, David ; Leidinger, Paul ; Reinisch, David ; Vogl, Christoph ; Mayrhofer, Karl J J ; Katsounaros, Ioannis ; Schmid, Günter</creatorcontrib><description>Although recent years have brought significant progress within the field of electrochemical conversion of CO2 and CO to value-added chemicals, many more challenges need to be overcome for this technology to be implemented on an industrial level. Rational design of catalyst materials that would enable selective production of desired products at industrially relevant current densities (&gt;200 mA cm−2) is most certainly one of them. Here, we introduce Ag2Cu2O3, a mixed-metal oxide, as a starting template material for efficient electroreduction of CO to C2+ products. By combining results from electrochemical real-time mass spectrometry (EC-RTMS), XRD and XPS we confirmed the template nature of Ag2Cu2O3 and in situ formation of a fully reduced CuAg bimetallic material during the first minutes of electrolysis. Electrochemical screening of the catalyst revealed significantly varying product distributions when CO2 (CO2RR) and CO (CORR) where used as feed gases. During CORR, a faradaic efficiency close to 92% towards C2+ products at 600 mA cm−2 was achieved. On the other hand, during CO2RR, CO was found to be the main product under all tested current densities, reaching a maximum faradaic efficiency of 68%. XPS valence band spectra of the bimetallic surface originating from Ag2Cu2O3 showed that its d-band electronic structure is noticeably different compared to metallic Ag and Cu, a finding we link to the observed product distributions. Finally, additional microscopy characterization techniques were used to investigate the observed surface reconstruction of the catalyst material under reaction conditions.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/d0ee01100b</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Bimetals ; Carbon dioxide ; Catalysts ; Copper ; Current density ; Electrochemistry ; Electrolysis ; Electronic structure ; Electrowinning ; Gases ; Mass spectrometry ; Mass spectroscopy ; Materials selection ; Metal oxides ; Silver ; Valence band ; X ray photoelectron spectroscopy</subject><ispartof>Energy &amp; environmental science, 2020-09, Vol.13 (9), p.2993-3006</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Martić, Nemanja</creatorcontrib><creatorcontrib>Reller, Christian</creatorcontrib><creatorcontrib>Macauley, Chandra</creatorcontrib><creatorcontrib>Löffler, Mario</creatorcontrib><creatorcontrib>Reichert, Andreas M</creatorcontrib><creatorcontrib>Reichbauer, Thomas</creatorcontrib><creatorcontrib>Kim-Marie Vetter</creatorcontrib><creatorcontrib>Schmid, Bernhard</creatorcontrib><creatorcontrib>McLaughlin, David</creatorcontrib><creatorcontrib>Leidinger, Paul</creatorcontrib><creatorcontrib>Reinisch, David</creatorcontrib><creatorcontrib>Vogl, Christoph</creatorcontrib><creatorcontrib>Mayrhofer, Karl J J</creatorcontrib><creatorcontrib>Katsounaros, Ioannis</creatorcontrib><creatorcontrib>Schmid, Günter</creatorcontrib><title>Ag2Cu2O3 – a catalyst template material for selective electroreduction of CO to C2+ products</title><title>Energy &amp; environmental science</title><description>Although recent years have brought significant progress within the field of electrochemical conversion of CO2 and CO to value-added chemicals, many more challenges need to be overcome for this technology to be implemented on an industrial level. Rational design of catalyst materials that would enable selective production of desired products at industrially relevant current densities (&gt;200 mA cm−2) is most certainly one of them. Here, we introduce Ag2Cu2O3, a mixed-metal oxide, as a starting template material for efficient electroreduction of CO to C2+ products. By combining results from electrochemical real-time mass spectrometry (EC-RTMS), XRD and XPS we confirmed the template nature of Ag2Cu2O3 and in situ formation of a fully reduced CuAg bimetallic material during the first minutes of electrolysis. Electrochemical screening of the catalyst revealed significantly varying product distributions when CO2 (CO2RR) and CO (CORR) where used as feed gases. During CORR, a faradaic efficiency close to 92% towards C2+ products at 600 mA cm−2 was achieved. On the other hand, during CO2RR, CO was found to be the main product under all tested current densities, reaching a maximum faradaic efficiency of 68%. XPS valence band spectra of the bimetallic surface originating from Ag2Cu2O3 showed that its d-band electronic structure is noticeably different compared to metallic Ag and Cu, a finding we link to the observed product distributions. Finally, additional microscopy characterization techniques were used to investigate the observed surface reconstruction of the catalyst material under reaction conditions.</description><subject>Bimetals</subject><subject>Carbon dioxide</subject><subject>Catalysts</subject><subject>Copper</subject><subject>Current density</subject><subject>Electrochemistry</subject><subject>Electrolysis</subject><subject>Electronic structure</subject><subject>Electrowinning</subject><subject>Gases</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Materials selection</subject><subject>Metal oxides</subject><subject>Silver</subject><subject>Valence band</subject><subject>X ray photoelectron spectroscopy</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo1jstOwzAURC0EEqWw4QsssUSB6-tXsqwiXlKlbGBL5TrXVau0LrGDxI5_4A_5EsJrMzM6i5lh7FzAlQBZXbdABEIALA_YRFitCm3BHP5nU-ExO0lpA2AQbDVhz7MV1gM2kn--f3DHvcuue0uZZ9ruO5eJb0fp167jIfY8UUc-r1-J_4Q-9tQOI4g7HgOvG54jr_GS7_v4zdMpOwquS3T251P2dHvzWN8X8-buoZ7NixUi5MIoo0ujA7bjQ9tqTdIrXbUSpQ6OFHgRWlAayaINJQYNVvilCjagF0shp-zit3ccfhko5cUmDv1unFygUljK0hqUX5i5VIc</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Martić, Nemanja</creator><creator>Reller, Christian</creator><creator>Macauley, Chandra</creator><creator>Löffler, Mario</creator><creator>Reichert, Andreas M</creator><creator>Reichbauer, Thomas</creator><creator>Kim-Marie Vetter</creator><creator>Schmid, Bernhard</creator><creator>McLaughlin, David</creator><creator>Leidinger, Paul</creator><creator>Reinisch, David</creator><creator>Vogl, Christoph</creator><creator>Mayrhofer, Karl J J</creator><creator>Katsounaros, Ioannis</creator><creator>Schmid, Günter</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20200901</creationdate><title>Ag2Cu2O3 – a catalyst template material for selective electroreduction of CO to C2+ products</title><author>Martić, Nemanja ; Reller, Christian ; Macauley, Chandra ; Löffler, Mario ; Reichert, Andreas M ; Reichbauer, Thomas ; Kim-Marie Vetter ; Schmid, Bernhard ; McLaughlin, David ; Leidinger, Paul ; Reinisch, David ; Vogl, Christoph ; Mayrhofer, Karl J J ; Katsounaros, Ioannis ; Schmid, Günter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g220t-6465865f2d6927d55e3c459d3235fae40c1fd0452e727f82f5071cb4f7f2c1b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bimetals</topic><topic>Carbon dioxide</topic><topic>Catalysts</topic><topic>Copper</topic><topic>Current density</topic><topic>Electrochemistry</topic><topic>Electrolysis</topic><topic>Electronic structure</topic><topic>Electrowinning</topic><topic>Gases</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Materials selection</topic><topic>Metal oxides</topic><topic>Silver</topic><topic>Valence band</topic><topic>X ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martić, Nemanja</creatorcontrib><creatorcontrib>Reller, Christian</creatorcontrib><creatorcontrib>Macauley, Chandra</creatorcontrib><creatorcontrib>Löffler, Mario</creatorcontrib><creatorcontrib>Reichert, Andreas M</creatorcontrib><creatorcontrib>Reichbauer, Thomas</creatorcontrib><creatorcontrib>Kim-Marie Vetter</creatorcontrib><creatorcontrib>Schmid, Bernhard</creatorcontrib><creatorcontrib>McLaughlin, David</creatorcontrib><creatorcontrib>Leidinger, Paul</creatorcontrib><creatorcontrib>Reinisch, David</creatorcontrib><creatorcontrib>Vogl, Christoph</creatorcontrib><creatorcontrib>Mayrhofer, Karl J J</creatorcontrib><creatorcontrib>Katsounaros, Ioannis</creatorcontrib><creatorcontrib>Schmid, Günter</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy &amp; environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martić, Nemanja</au><au>Reller, Christian</au><au>Macauley, Chandra</au><au>Löffler, Mario</au><au>Reichert, Andreas M</au><au>Reichbauer, Thomas</au><au>Kim-Marie Vetter</au><au>Schmid, Bernhard</au><au>McLaughlin, David</au><au>Leidinger, Paul</au><au>Reinisch, David</au><au>Vogl, Christoph</au><au>Mayrhofer, Karl J J</au><au>Katsounaros, Ioannis</au><au>Schmid, Günter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ag2Cu2O3 – a catalyst template material for selective electroreduction of CO to C2+ products</atitle><jtitle>Energy &amp; environmental science</jtitle><date>2020-09-01</date><risdate>2020</risdate><volume>13</volume><issue>9</issue><spage>2993</spage><epage>3006</epage><pages>2993-3006</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>Although recent years have brought significant progress within the field of electrochemical conversion of CO2 and CO to value-added chemicals, many more challenges need to be overcome for this technology to be implemented on an industrial level. Rational design of catalyst materials that would enable selective production of desired products at industrially relevant current densities (&gt;200 mA cm−2) is most certainly one of them. Here, we introduce Ag2Cu2O3, a mixed-metal oxide, as a starting template material for efficient electroreduction of CO to C2+ products. By combining results from electrochemical real-time mass spectrometry (EC-RTMS), XRD and XPS we confirmed the template nature of Ag2Cu2O3 and in situ formation of a fully reduced CuAg bimetallic material during the first minutes of electrolysis. Electrochemical screening of the catalyst revealed significantly varying product distributions when CO2 (CO2RR) and CO (CORR) where used as feed gases. During CORR, a faradaic efficiency close to 92% towards C2+ products at 600 mA cm−2 was achieved. On the other hand, during CO2RR, CO was found to be the main product under all tested current densities, reaching a maximum faradaic efficiency of 68%. XPS valence band spectra of the bimetallic surface originating from Ag2Cu2O3 showed that its d-band electronic structure is noticeably different compared to metallic Ag and Cu, a finding we link to the observed product distributions. Finally, additional microscopy characterization techniques were used to investigate the observed surface reconstruction of the catalyst material under reaction conditions.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0ee01100b</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1754-5692
ispartof Energy & environmental science, 2020-09, Vol.13 (9), p.2993-3006
issn 1754-5692
1754-5706
language eng
recordid cdi_proquest_journals_2442838762
source Royal Society Of Chemistry Journals
subjects Bimetals
Carbon dioxide
Catalysts
Copper
Current density
Electrochemistry
Electrolysis
Electronic structure
Electrowinning
Gases
Mass spectrometry
Mass spectroscopy
Materials selection
Metal oxides
Silver
Valence band
X ray photoelectron spectroscopy
title Ag2Cu2O3 – a catalyst template material for selective electroreduction of CO to C2+ products
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T11%3A21%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ag2Cu2O3%20%E2%80%93%20a%20catalyst%20template%20material%20for%20selective%20electroreduction%20of%20CO%20to%20C2+%20products&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Marti%C4%87,%20Nemanja&rft.date=2020-09-01&rft.volume=13&rft.issue=9&rft.spage=2993&rft.epage=3006&rft.pages=2993-3006&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/d0ee01100b&rft_dat=%3Cproquest%3E2442838762%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2442838762&rft_id=info:pmid/&rfr_iscdi=true