How to make an efficient gas-phase heterogeneous CO2 hydrogenation photocatalyst (This paper is dedicated to Professor Geoffrey Ozin on the occasion of his 77th birthday.)

Tailoring the performance of a photocatalyst by design is challenge in the field of renewable synthetic fuels. Herein, polymorphic heterostructures comprised of two indium oxide based photocatalysts, with distinct structures yet continuously adjustable fractions of the same composition, enable optim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & environmental science 2020-01, Vol.13 (9), p.3054-3063
Hauptverfasser: Tingjiang Yan, Li, Na, Wang, Linlin, Liu, Qin, Abdinoor Jelle, Wang, Lu, Xu, Yangfan, Liang, Yan, Dai, Ying, Huang, Baibiao, You, Jinmao, Ozin, Geoffrey A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3063
container_issue 9
container_start_page 3054
container_title Energy & environmental science
container_volume 13
creator Tingjiang Yan
Li, Na
Wang, Linlin
Liu, Qin
Abdinoor Jelle
Wang, Lu
Xu, Yangfan
Liang, Yan
Dai, Ying
Huang, Baibiao
You, Jinmao
Ozin, Geoffrey A
description Tailoring the performance of a photocatalyst by design is challenge in the field of renewable synthetic fuels. Herein, polymorphic heterostructures comprised of two indium oxide based photocatalysts, with distinct structures yet continuously adjustable fractions of the same composition, enable optimization of the activity and selectivity of CO2 hydrogenation to CO and CH3OH. The strategy rests on the cubic (c-) to rhombohedral (rh-) indium oxide hydroxide In2O3−x(OH)y phase transition, in which the fraction of the cubic phase that nucleates and grows within the rhombohedral phase is under precise structural and compositional control. Interfaces so-formed between cubic and rhombohedral polymorphs with distinct electronic band structures as well as separate locations of electron trapping oxygen vacancies and hole trapping hydroxyl defects in individual In2O3−x(OH)y components, enable charge generation, separation and lifetimes of photogenerated electron–hole pairs to be finely tuned. This facilitates command over H2 and CO2 surface chemical reactions that are responsible for the activity and selectivity towards products CO and CH3OH. The control over the performance metrics of a CO2 hydrogenation photocatalyst provided by tuneable rh/c-In2O3−x(OH)y polymorphic heterostructures, affords promising opportunities for the future development of renewable synthetic fuels.
doi_str_mv 10.1039/d0ee01124j
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2442838045</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2442838045</sourcerecordid><originalsourceid>FETCH-LOGICAL-c191t-6cef79d7683ec5771010e1d2dec9612b09b87244e93b6682e8a2eabfaf2cf9943</originalsourceid><addsrcrecordid>eNo1jctOwzAURC0EEuWx4QuuxAYWKbaT2vESVdAiVSqLsq4c-7pOKXGIXaHwS_wkKY_VjGY0Zwi5YnTMaK7uLEWkjPFie0RGTE6KbCKpOP73QvFTchbjllLBqVQj8jUPH5ACvOlXBN0AOlebGpsEGx2z1uuI4DFhFzbYYNhHmC45-N7-BDrVoYHWhxSMTnrXxwQ3K19HaHWLHQzGoq2HDu3h5bkLDmMMHcwwONdhD8vPuoEBkjxCMEbHAzE4OECkTB6qukve6n58e0FOnN5FvPzTc_Ly-LCazrPFcvY0vV9khimWMmHQSWWlKHM0EykZZRSZ5RaNEoxXVFWl5EWBKq-EKDmWmqOunHbcOKWK_Jxc_3LbLrzvMab1Nuy7ZrhcDzNe5iUtJvk3u9pxcg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2442838045</pqid></control><display><type>article</type><title>How to make an efficient gas-phase heterogeneous CO2 hydrogenation photocatalyst (This paper is dedicated to Professor Geoffrey Ozin on the occasion of his 77th birthday.)</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Tingjiang Yan ; Li, Na ; Wang, Linlin ; Liu, Qin ; Abdinoor Jelle ; Wang, Lu ; Xu, Yangfan ; Liang, Yan ; Dai, Ying ; Huang, Baibiao ; You, Jinmao ; Ozin, Geoffrey A</creator><creatorcontrib>Tingjiang Yan ; Li, Na ; Wang, Linlin ; Liu, Qin ; Abdinoor Jelle ; Wang, Lu ; Xu, Yangfan ; Liang, Yan ; Dai, Ying ; Huang, Baibiao ; You, Jinmao ; Ozin, Geoffrey A</creatorcontrib><description>Tailoring the performance of a photocatalyst by design is challenge in the field of renewable synthetic fuels. Herein, polymorphic heterostructures comprised of two indium oxide based photocatalysts, with distinct structures yet continuously adjustable fractions of the same composition, enable optimization of the activity and selectivity of CO2 hydrogenation to CO and CH3OH. The strategy rests on the cubic (c-) to rhombohedral (rh-) indium oxide hydroxide In2O3−x(OH)y phase transition, in which the fraction of the cubic phase that nucleates and grows within the rhombohedral phase is under precise structural and compositional control. Interfaces so-formed between cubic and rhombohedral polymorphs with distinct electronic band structures as well as separate locations of electron trapping oxygen vacancies and hole trapping hydroxyl defects in individual In2O3−x(OH)y components, enable charge generation, separation and lifetimes of photogenerated electron–hole pairs to be finely tuned. This facilitates command over H2 and CO2 surface chemical reactions that are responsible for the activity and selectivity towards products CO and CH3OH. The control over the performance metrics of a CO2 hydrogenation photocatalyst provided by tuneable rh/c-In2O3−x(OH)y polymorphic heterostructures, affords promising opportunities for the future development of renewable synthetic fuels.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/d0ee01124j</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Carbon dioxide ; Chemical reactions ; Fuels ; Heterostructures ; Hydrogenation ; Indium ; Indium oxides ; Interfaces ; Optimization ; Performance measurement ; Phase transitions ; Photocatalysts ; Selectivity ; Synthetic fuels ; Trapping</subject><ispartof>Energy &amp; environmental science, 2020-01, Vol.13 (9), p.3054-3063</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c191t-6cef79d7683ec5771010e1d2dec9612b09b87244e93b6682e8a2eabfaf2cf9943</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids></links><search><creatorcontrib>Tingjiang Yan</creatorcontrib><creatorcontrib>Li, Na</creatorcontrib><creatorcontrib>Wang, Linlin</creatorcontrib><creatorcontrib>Liu, Qin</creatorcontrib><creatorcontrib>Abdinoor Jelle</creatorcontrib><creatorcontrib>Wang, Lu</creatorcontrib><creatorcontrib>Xu, Yangfan</creatorcontrib><creatorcontrib>Liang, Yan</creatorcontrib><creatorcontrib>Dai, Ying</creatorcontrib><creatorcontrib>Huang, Baibiao</creatorcontrib><creatorcontrib>You, Jinmao</creatorcontrib><creatorcontrib>Ozin, Geoffrey A</creatorcontrib><title>How to make an efficient gas-phase heterogeneous CO2 hydrogenation photocatalyst (This paper is dedicated to Professor Geoffrey Ozin on the occasion of his 77th birthday.)</title><title>Energy &amp; environmental science</title><description>Tailoring the performance of a photocatalyst by design is challenge in the field of renewable synthetic fuels. Herein, polymorphic heterostructures comprised of two indium oxide based photocatalysts, with distinct structures yet continuously adjustable fractions of the same composition, enable optimization of the activity and selectivity of CO2 hydrogenation to CO and CH3OH. The strategy rests on the cubic (c-) to rhombohedral (rh-) indium oxide hydroxide In2O3−x(OH)y phase transition, in which the fraction of the cubic phase that nucleates and grows within the rhombohedral phase is under precise structural and compositional control. Interfaces so-formed between cubic and rhombohedral polymorphs with distinct electronic band structures as well as separate locations of electron trapping oxygen vacancies and hole trapping hydroxyl defects in individual In2O3−x(OH)y components, enable charge generation, separation and lifetimes of photogenerated electron–hole pairs to be finely tuned. This facilitates command over H2 and CO2 surface chemical reactions that are responsible for the activity and selectivity towards products CO and CH3OH. The control over the performance metrics of a CO2 hydrogenation photocatalyst provided by tuneable rh/c-In2O3−x(OH)y polymorphic heterostructures, affords promising opportunities for the future development of renewable synthetic fuels.</description><subject>Carbon dioxide</subject><subject>Chemical reactions</subject><subject>Fuels</subject><subject>Heterostructures</subject><subject>Hydrogenation</subject><subject>Indium</subject><subject>Indium oxides</subject><subject>Interfaces</subject><subject>Optimization</subject><subject>Performance measurement</subject><subject>Phase transitions</subject><subject>Photocatalysts</subject><subject>Selectivity</subject><subject>Synthetic fuels</subject><subject>Trapping</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo1jctOwzAURC0EEuWx4QuuxAYWKbaT2vESVdAiVSqLsq4c-7pOKXGIXaHwS_wkKY_VjGY0Zwi5YnTMaK7uLEWkjPFie0RGTE6KbCKpOP73QvFTchbjllLBqVQj8jUPH5ACvOlXBN0AOlebGpsEGx2z1uuI4DFhFzbYYNhHmC45-N7-BDrVoYHWhxSMTnrXxwQ3K19HaHWLHQzGoq2HDu3h5bkLDmMMHcwwONdhD8vPuoEBkjxCMEbHAzE4OECkTB6qukve6n58e0FOnN5FvPzTc_Ly-LCazrPFcvY0vV9khimWMmHQSWWlKHM0EykZZRSZ5RaNEoxXVFWl5EWBKq-EKDmWmqOunHbcOKWK_Jxc_3LbLrzvMab1Nuy7ZrhcDzNe5iUtJvk3u9pxcg</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Tingjiang Yan</creator><creator>Li, Na</creator><creator>Wang, Linlin</creator><creator>Liu, Qin</creator><creator>Abdinoor Jelle</creator><creator>Wang, Lu</creator><creator>Xu, Yangfan</creator><creator>Liang, Yan</creator><creator>Dai, Ying</creator><creator>Huang, Baibiao</creator><creator>You, Jinmao</creator><creator>Ozin, Geoffrey A</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20200101</creationdate><title>How to make an efficient gas-phase heterogeneous CO2 hydrogenation photocatalyst (This paper is dedicated to Professor Geoffrey Ozin on the occasion of his 77th birthday.)</title><author>Tingjiang Yan ; Li, Na ; Wang, Linlin ; Liu, Qin ; Abdinoor Jelle ; Wang, Lu ; Xu, Yangfan ; Liang, Yan ; Dai, Ying ; Huang, Baibiao ; You, Jinmao ; Ozin, Geoffrey A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c191t-6cef79d7683ec5771010e1d2dec9612b09b87244e93b6682e8a2eabfaf2cf9943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Carbon dioxide</topic><topic>Chemical reactions</topic><topic>Fuels</topic><topic>Heterostructures</topic><topic>Hydrogenation</topic><topic>Indium</topic><topic>Indium oxides</topic><topic>Interfaces</topic><topic>Optimization</topic><topic>Performance measurement</topic><topic>Phase transitions</topic><topic>Photocatalysts</topic><topic>Selectivity</topic><topic>Synthetic fuels</topic><topic>Trapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tingjiang Yan</creatorcontrib><creatorcontrib>Li, Na</creatorcontrib><creatorcontrib>Wang, Linlin</creatorcontrib><creatorcontrib>Liu, Qin</creatorcontrib><creatorcontrib>Abdinoor Jelle</creatorcontrib><creatorcontrib>Wang, Lu</creatorcontrib><creatorcontrib>Xu, Yangfan</creatorcontrib><creatorcontrib>Liang, Yan</creatorcontrib><creatorcontrib>Dai, Ying</creatorcontrib><creatorcontrib>Huang, Baibiao</creatorcontrib><creatorcontrib>You, Jinmao</creatorcontrib><creatorcontrib>Ozin, Geoffrey A</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy &amp; environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tingjiang Yan</au><au>Li, Na</au><au>Wang, Linlin</au><au>Liu, Qin</au><au>Abdinoor Jelle</au><au>Wang, Lu</au><au>Xu, Yangfan</au><au>Liang, Yan</au><au>Dai, Ying</au><au>Huang, Baibiao</au><au>You, Jinmao</au><au>Ozin, Geoffrey A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How to make an efficient gas-phase heterogeneous CO2 hydrogenation photocatalyst (This paper is dedicated to Professor Geoffrey Ozin on the occasion of his 77th birthday.)</atitle><jtitle>Energy &amp; environmental science</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>13</volume><issue>9</issue><spage>3054</spage><epage>3063</epage><pages>3054-3063</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>Tailoring the performance of a photocatalyst by design is challenge in the field of renewable synthetic fuels. Herein, polymorphic heterostructures comprised of two indium oxide based photocatalysts, with distinct structures yet continuously adjustable fractions of the same composition, enable optimization of the activity and selectivity of CO2 hydrogenation to CO and CH3OH. The strategy rests on the cubic (c-) to rhombohedral (rh-) indium oxide hydroxide In2O3−x(OH)y phase transition, in which the fraction of the cubic phase that nucleates and grows within the rhombohedral phase is under precise structural and compositional control. Interfaces so-formed between cubic and rhombohedral polymorphs with distinct electronic band structures as well as separate locations of electron trapping oxygen vacancies and hole trapping hydroxyl defects in individual In2O3−x(OH)y components, enable charge generation, separation and lifetimes of photogenerated electron–hole pairs to be finely tuned. This facilitates command over H2 and CO2 surface chemical reactions that are responsible for the activity and selectivity towards products CO and CH3OH. The control over the performance metrics of a CO2 hydrogenation photocatalyst provided by tuneable rh/c-In2O3−x(OH)y polymorphic heterostructures, affords promising opportunities for the future development of renewable synthetic fuels.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0ee01124j</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1754-5692
ispartof Energy & environmental science, 2020-01, Vol.13 (9), p.3054-3063
issn 1754-5692
1754-5706
language eng
recordid cdi_proquest_journals_2442838045
source Royal Society Of Chemistry Journals 2008-
subjects Carbon dioxide
Chemical reactions
Fuels
Heterostructures
Hydrogenation
Indium
Indium oxides
Interfaces
Optimization
Performance measurement
Phase transitions
Photocatalysts
Selectivity
Synthetic fuels
Trapping
title How to make an efficient gas-phase heterogeneous CO2 hydrogenation photocatalyst (This paper is dedicated to Professor Geoffrey Ozin on the occasion of his 77th birthday.)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T05%3A55%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20to%20make%20an%20efficient%20gas-phase%20heterogeneous%20CO2%20hydrogenation%20photocatalyst%20(This%20paper%20is%20dedicated%20to%20Professor%20Geoffrey%20Ozin%20on%20the%20occasion%20of%20his%2077th%20birthday.)&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Tingjiang%20Yan&rft.date=2020-01-01&rft.volume=13&rft.issue=9&rft.spage=3054&rft.epage=3063&rft.pages=3054-3063&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/d0ee01124j&rft_dat=%3Cproquest%3E2442838045%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2442838045&rft_id=info:pmid/&rfr_iscdi=true