A polynomial algorithm for minimizing discrete convic functions in fixed dimension

In Chirkov et al., (2019), classes of conic and discrete conic functions were introduced. In this paper we use the term convic instead conic. The class of convic functions properly includes the classes of convex functions, strictly quasiconvex functions and the class of quasiconvex polynomials. On t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete Applied Mathematics 2020-09, Vol.283, p.11-19
Hauptverfasser: Veselov, S.I., Gribanov, D.V., Zolotykh, N.Yu, Chirkov, A.Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19
container_issue
container_start_page 11
container_title Discrete Applied Mathematics
container_volume 283
creator Veselov, S.I.
Gribanov, D.V.
Zolotykh, N.Yu
Chirkov, A.Yu
description In Chirkov et al., (2019), classes of conic and discrete conic functions were introduced. In this paper we use the term convic instead conic. The class of convic functions properly includes the classes of convex functions, strictly quasiconvex functions and the class of quasiconvex polynomials. On the other hand, the class of convic functions is properly included in the class of quasiconvex functions. The discrete convic function is a discrete analogue of the convic function. In Chirkov et al., (2019), the lower bound 3n−1log(2ρ−1) for the number of calls to the comparison oracle needed to find the minimum of the discrete convic function defined on integer points of some n-dimensional ball with radius ρ was obtained. But the problem of the existence of a polynomial (in logρ for fixed n) algorithm for minimizing such functions has remained open. In this paper, we answer positively the question of the existence of such an algorithm. Namely, we propose an algorithm for minimizing discrete convic functions that uses 2O(n2logn)logρ calls to the comparison oracle and has 2O(n2logn)poly(logρ) bit complexity.
doi_str_mv 10.1016/j.dam.2019.10.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2442827293</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166218X19304561</els_id><sourcerecordid>2442827293</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-a6109e9ac3e01d902856f3ed05771a7243e3951cabe6ffcd1b15fa280a92d0b53</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsP4G7A9YxJpvOHq1L8g4KbCu5CmtzUO8wkNZkW69P0WfpkptS1q8u5nHPv4SPkltGMUVbet5mWfcYpa6LOKC3PyIjVFU_LqmLnZBQ9ZcpZ_XFJrkJoKaUsqhFZTJO163bW9Si7RHYr53H47BPjfNKjxR5_0K4SjUF5GCBRzm5RJWZj1YDOhgTtYW_wG_Rhr7EHG-L2mlwY2QW4-Ztj8v70uJi9pPO359fZdJ6qnBdDKktGG2ikyoEy3VBeF6XJQdMidpYVn-SQNwVTcgmlMUqzJSuM5DWVDdd0WeRjcne6u_buawNhEK3beBtfCj6Z8JpXvMmji51cyrsQPBix9thLvxOMiiM80YoITxzhHVcRXsw8nDIQ628RvAgKwSrQ6EENQjv8J_0LHfB55A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2442827293</pqid></control><display><type>article</type><title>A polynomial algorithm for minimizing discrete convic functions in fixed dimension</title><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Veselov, S.I. ; Gribanov, D.V. ; Zolotykh, N.Yu ; Chirkov, A.Yu</creator><creatorcontrib>Veselov, S.I. ; Gribanov, D.V. ; Zolotykh, N.Yu ; Chirkov, A.Yu</creatorcontrib><description>In Chirkov et al., (2019), classes of conic and discrete conic functions were introduced. In this paper we use the term convic instead conic. The class of convic functions properly includes the classes of convex functions, strictly quasiconvex functions and the class of quasiconvex polynomials. On the other hand, the class of convic functions is properly included in the class of quasiconvex functions. The discrete convic function is a discrete analogue of the convic function. In Chirkov et al., (2019), the lower bound 3n−1log(2ρ−1) for the number of calls to the comparison oracle needed to find the minimum of the discrete convic function defined on integer points of some n-dimensional ball with radius ρ was obtained. But the problem of the existence of a polynomial (in logρ for fixed n) algorithm for minimizing such functions has remained open. In this paper, we answer positively the question of the existence of such an algorithm. Namely, we propose an algorithm for minimizing discrete convic functions that uses 2O(n2logn)logρ calls to the comparison oracle and has 2O(n2logn)poly(logρ) bit complexity.</description><identifier>ISSN: 0166-218X</identifier><identifier>EISSN: 1872-6771</identifier><identifier>DOI: 10.1016/j.dam.2019.10.006</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Comparison oracle ; convic function ; Discrete convic function ; Functions (mathematics) ; Integer lattice ; Lower bounds ; Mathematical analysis ; Polynomials ; Quasiconvex function</subject><ispartof>Discrete Applied Mathematics, 2020-09, Vol.283, p.11-19</ispartof><rights>2019</rights><rights>Copyright Elsevier BV Sep 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-a6109e9ac3e01d902856f3ed05771a7243e3951cabe6ffcd1b15fa280a92d0b53</citedby><cites>FETCH-LOGICAL-c325t-a6109e9ac3e01d902856f3ed05771a7243e3951cabe6ffcd1b15fa280a92d0b53</cites><orcidid>0000-0003-4542-9233</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.dam.2019.10.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Veselov, S.I.</creatorcontrib><creatorcontrib>Gribanov, D.V.</creatorcontrib><creatorcontrib>Zolotykh, N.Yu</creatorcontrib><creatorcontrib>Chirkov, A.Yu</creatorcontrib><title>A polynomial algorithm for minimizing discrete convic functions in fixed dimension</title><title>Discrete Applied Mathematics</title><description>In Chirkov et al., (2019), classes of conic and discrete conic functions were introduced. In this paper we use the term convic instead conic. The class of convic functions properly includes the classes of convex functions, strictly quasiconvex functions and the class of quasiconvex polynomials. On the other hand, the class of convic functions is properly included in the class of quasiconvex functions. The discrete convic function is a discrete analogue of the convic function. In Chirkov et al., (2019), the lower bound 3n−1log(2ρ−1) for the number of calls to the comparison oracle needed to find the minimum of the discrete convic function defined on integer points of some n-dimensional ball with radius ρ was obtained. But the problem of the existence of a polynomial (in logρ for fixed n) algorithm for minimizing such functions has remained open. In this paper, we answer positively the question of the existence of such an algorithm. Namely, we propose an algorithm for minimizing discrete convic functions that uses 2O(n2logn)logρ calls to the comparison oracle and has 2O(n2logn)poly(logρ) bit complexity.</description><subject>Algorithms</subject><subject>Comparison oracle</subject><subject>convic function</subject><subject>Discrete convic function</subject><subject>Functions (mathematics)</subject><subject>Integer lattice</subject><subject>Lower bounds</subject><subject>Mathematical analysis</subject><subject>Polynomials</subject><subject>Quasiconvex function</subject><issn>0166-218X</issn><issn>1872-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWKsP4G7A9YxJpvOHq1L8g4KbCu5CmtzUO8wkNZkW69P0WfpkptS1q8u5nHPv4SPkltGMUVbet5mWfcYpa6LOKC3PyIjVFU_LqmLnZBQ9ZcpZ_XFJrkJoKaUsqhFZTJO163bW9Si7RHYr53H47BPjfNKjxR5_0K4SjUF5GCBRzm5RJWZj1YDOhgTtYW_wG_Rhr7EHG-L2mlwY2QW4-Ztj8v70uJi9pPO359fZdJ6qnBdDKktGG2ikyoEy3VBeF6XJQdMidpYVn-SQNwVTcgmlMUqzJSuM5DWVDdd0WeRjcne6u_buawNhEK3beBtfCj6Z8JpXvMmji51cyrsQPBix9thLvxOMiiM80YoITxzhHVcRXsw8nDIQ628RvAgKwSrQ6EENQjv8J_0LHfB55A</recordid><startdate>20200915</startdate><enddate>20200915</enddate><creator>Veselov, S.I.</creator><creator>Gribanov, D.V.</creator><creator>Zolotykh, N.Yu</creator><creator>Chirkov, A.Yu</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4542-9233</orcidid></search><sort><creationdate>20200915</creationdate><title>A polynomial algorithm for minimizing discrete convic functions in fixed dimension</title><author>Veselov, S.I. ; Gribanov, D.V. ; Zolotykh, N.Yu ; Chirkov, A.Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-a6109e9ac3e01d902856f3ed05771a7243e3951cabe6ffcd1b15fa280a92d0b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Comparison oracle</topic><topic>convic function</topic><topic>Discrete convic function</topic><topic>Functions (mathematics)</topic><topic>Integer lattice</topic><topic>Lower bounds</topic><topic>Mathematical analysis</topic><topic>Polynomials</topic><topic>Quasiconvex function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Veselov, S.I.</creatorcontrib><creatorcontrib>Gribanov, D.V.</creatorcontrib><creatorcontrib>Zolotykh, N.Yu</creatorcontrib><creatorcontrib>Chirkov, A.Yu</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Veselov, S.I.</au><au>Gribanov, D.V.</au><au>Zolotykh, N.Yu</au><au>Chirkov, A.Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A polynomial algorithm for minimizing discrete convic functions in fixed dimension</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2020-09-15</date><risdate>2020</risdate><volume>283</volume><spage>11</spage><epage>19</epage><pages>11-19</pages><issn>0166-218X</issn><eissn>1872-6771</eissn><abstract>In Chirkov et al., (2019), classes of conic and discrete conic functions were introduced. In this paper we use the term convic instead conic. The class of convic functions properly includes the classes of convex functions, strictly quasiconvex functions and the class of quasiconvex polynomials. On the other hand, the class of convic functions is properly included in the class of quasiconvex functions. The discrete convic function is a discrete analogue of the convic function. In Chirkov et al., (2019), the lower bound 3n−1log(2ρ−1) for the number of calls to the comparison oracle needed to find the minimum of the discrete convic function defined on integer points of some n-dimensional ball with radius ρ was obtained. But the problem of the existence of a polynomial (in logρ for fixed n) algorithm for minimizing such functions has remained open. In this paper, we answer positively the question of the existence of such an algorithm. Namely, we propose an algorithm for minimizing discrete convic functions that uses 2O(n2logn)logρ calls to the comparison oracle and has 2O(n2logn)poly(logρ) bit complexity.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.dam.2019.10.006</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4542-9233</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0166-218X
ispartof Discrete Applied Mathematics, 2020-09, Vol.283, p.11-19
issn 0166-218X
1872-6771
language eng
recordid cdi_proquest_journals_2442827293
source Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Comparison oracle
convic function
Discrete convic function
Functions (mathematics)
Integer lattice
Lower bounds
Mathematical analysis
Polynomials
Quasiconvex function
title A polynomial algorithm for minimizing discrete convic functions in fixed dimension
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T12%3A26%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20polynomial%20algorithm%20for%20minimizing%20discrete%20convic%20functions%20in%C2%A0fixed%C2%A0dimension&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=Veselov,%20S.I.&rft.date=2020-09-15&rft.volume=283&rft.spage=11&rft.epage=19&rft.pages=11-19&rft.issn=0166-218X&rft.eissn=1872-6771&rft_id=info:doi/10.1016/j.dam.2019.10.006&rft_dat=%3Cproquest_cross%3E2442827293%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2442827293&rft_id=info:pmid/&rft_els_id=S0166218X19304561&rfr_iscdi=true