A polynomial algorithm for minimizing discrete convic functions in fixed dimension
In Chirkov et al., (2019), classes of conic and discrete conic functions were introduced. In this paper we use the term convic instead conic. The class of convic functions properly includes the classes of convex functions, strictly quasiconvex functions and the class of quasiconvex polynomials. On t...
Gespeichert in:
Veröffentlicht in: | Discrete Applied Mathematics 2020-09, Vol.283, p.11-19 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 19 |
---|---|
container_issue | |
container_start_page | 11 |
container_title | Discrete Applied Mathematics |
container_volume | 283 |
creator | Veselov, S.I. Gribanov, D.V. Zolotykh, N.Yu Chirkov, A.Yu |
description | In Chirkov et al., (2019), classes of conic and discrete conic functions were introduced. In this paper we use the term convic instead conic. The class of convic functions properly includes the classes of convex functions, strictly quasiconvex functions and the class of quasiconvex polynomials. On the other hand, the class of convic functions is properly included in the class of quasiconvex functions. The discrete convic function is a discrete analogue of the convic function. In Chirkov et al., (2019), the lower bound 3n−1log(2ρ−1) for the number of calls to the comparison oracle needed to find the minimum of the discrete convic function defined on integer points of some n-dimensional ball with radius ρ was obtained. But the problem of the existence of a polynomial (in logρ for fixed n) algorithm for minimizing such functions has remained open. In this paper, we answer positively the question of the existence of such an algorithm. Namely, we propose an algorithm for minimizing discrete convic functions that uses 2O(n2logn)logρ calls to the comparison oracle and has 2O(n2logn)poly(logρ) bit complexity. |
doi_str_mv | 10.1016/j.dam.2019.10.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2442827293</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166218X19304561</els_id><sourcerecordid>2442827293</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-a6109e9ac3e01d902856f3ed05771a7243e3951cabe6ffcd1b15fa280a92d0b53</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsP4G7A9YxJpvOHq1L8g4KbCu5CmtzUO8wkNZkW69P0WfpkptS1q8u5nHPv4SPkltGMUVbet5mWfcYpa6LOKC3PyIjVFU_LqmLnZBQ9ZcpZ_XFJrkJoKaUsqhFZTJO163bW9Si7RHYr53H47BPjfNKjxR5_0K4SjUF5GCBRzm5RJWZj1YDOhgTtYW_wG_Rhr7EHG-L2mlwY2QW4-Ztj8v70uJi9pPO359fZdJ6qnBdDKktGG2ikyoEy3VBeF6XJQdMidpYVn-SQNwVTcgmlMUqzJSuM5DWVDdd0WeRjcne6u_buawNhEK3beBtfCj6Z8JpXvMmji51cyrsQPBix9thLvxOMiiM80YoITxzhHVcRXsw8nDIQ628RvAgKwSrQ6EENQjv8J_0LHfB55A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2442827293</pqid></control><display><type>article</type><title>A polynomial algorithm for minimizing discrete convic functions in fixed dimension</title><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Veselov, S.I. ; Gribanov, D.V. ; Zolotykh, N.Yu ; Chirkov, A.Yu</creator><creatorcontrib>Veselov, S.I. ; Gribanov, D.V. ; Zolotykh, N.Yu ; Chirkov, A.Yu</creatorcontrib><description>In Chirkov et al., (2019), classes of conic and discrete conic functions were introduced. In this paper we use the term convic instead conic. The class of convic functions properly includes the classes of convex functions, strictly quasiconvex functions and the class of quasiconvex polynomials. On the other hand, the class of convic functions is properly included in the class of quasiconvex functions. The discrete convic function is a discrete analogue of the convic function. In Chirkov et al., (2019), the lower bound 3n−1log(2ρ−1) for the number of calls to the comparison oracle needed to find the minimum of the discrete convic function defined on integer points of some n-dimensional ball with radius ρ was obtained. But the problem of the existence of a polynomial (in logρ for fixed n) algorithm for minimizing such functions has remained open. In this paper, we answer positively the question of the existence of such an algorithm. Namely, we propose an algorithm for minimizing discrete convic functions that uses 2O(n2logn)logρ calls to the comparison oracle and has 2O(n2logn)poly(logρ) bit complexity.</description><identifier>ISSN: 0166-218X</identifier><identifier>EISSN: 1872-6771</identifier><identifier>DOI: 10.1016/j.dam.2019.10.006</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Comparison oracle ; convic function ; Discrete convic function ; Functions (mathematics) ; Integer lattice ; Lower bounds ; Mathematical analysis ; Polynomials ; Quasiconvex function</subject><ispartof>Discrete Applied Mathematics, 2020-09, Vol.283, p.11-19</ispartof><rights>2019</rights><rights>Copyright Elsevier BV Sep 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-a6109e9ac3e01d902856f3ed05771a7243e3951cabe6ffcd1b15fa280a92d0b53</citedby><cites>FETCH-LOGICAL-c325t-a6109e9ac3e01d902856f3ed05771a7243e3951cabe6ffcd1b15fa280a92d0b53</cites><orcidid>0000-0003-4542-9233</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.dam.2019.10.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Veselov, S.I.</creatorcontrib><creatorcontrib>Gribanov, D.V.</creatorcontrib><creatorcontrib>Zolotykh, N.Yu</creatorcontrib><creatorcontrib>Chirkov, A.Yu</creatorcontrib><title>A polynomial algorithm for minimizing discrete convic functions in fixed dimension</title><title>Discrete Applied Mathematics</title><description>In Chirkov et al., (2019), classes of conic and discrete conic functions were introduced. In this paper we use the term convic instead conic. The class of convic functions properly includes the classes of convex functions, strictly quasiconvex functions and the class of quasiconvex polynomials. On the other hand, the class of convic functions is properly included in the class of quasiconvex functions. The discrete convic function is a discrete analogue of the convic function. In Chirkov et al., (2019), the lower bound 3n−1log(2ρ−1) for the number of calls to the comparison oracle needed to find the minimum of the discrete convic function defined on integer points of some n-dimensional ball with radius ρ was obtained. But the problem of the existence of a polynomial (in logρ for fixed n) algorithm for minimizing such functions has remained open. In this paper, we answer positively the question of the existence of such an algorithm. Namely, we propose an algorithm for minimizing discrete convic functions that uses 2O(n2logn)logρ calls to the comparison oracle and has 2O(n2logn)poly(logρ) bit complexity.</description><subject>Algorithms</subject><subject>Comparison oracle</subject><subject>convic function</subject><subject>Discrete convic function</subject><subject>Functions (mathematics)</subject><subject>Integer lattice</subject><subject>Lower bounds</subject><subject>Mathematical analysis</subject><subject>Polynomials</subject><subject>Quasiconvex function</subject><issn>0166-218X</issn><issn>1872-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWKsP4G7A9YxJpvOHq1L8g4KbCu5CmtzUO8wkNZkW69P0WfpkptS1q8u5nHPv4SPkltGMUVbet5mWfcYpa6LOKC3PyIjVFU_LqmLnZBQ9ZcpZ_XFJrkJoKaUsqhFZTJO163bW9Si7RHYr53H47BPjfNKjxR5_0K4SjUF5GCBRzm5RJWZj1YDOhgTtYW_wG_Rhr7EHG-L2mlwY2QW4-Ztj8v70uJi9pPO359fZdJ6qnBdDKktGG2ikyoEy3VBeF6XJQdMidpYVn-SQNwVTcgmlMUqzJSuM5DWVDdd0WeRjcne6u_buawNhEK3beBtfCj6Z8JpXvMmji51cyrsQPBix9thLvxOMiiM80YoITxzhHVcRXsw8nDIQ628RvAgKwSrQ6EENQjv8J_0LHfB55A</recordid><startdate>20200915</startdate><enddate>20200915</enddate><creator>Veselov, S.I.</creator><creator>Gribanov, D.V.</creator><creator>Zolotykh, N.Yu</creator><creator>Chirkov, A.Yu</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4542-9233</orcidid></search><sort><creationdate>20200915</creationdate><title>A polynomial algorithm for minimizing discrete convic functions in fixed dimension</title><author>Veselov, S.I. ; Gribanov, D.V. ; Zolotykh, N.Yu ; Chirkov, A.Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-a6109e9ac3e01d902856f3ed05771a7243e3951cabe6ffcd1b15fa280a92d0b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Comparison oracle</topic><topic>convic function</topic><topic>Discrete convic function</topic><topic>Functions (mathematics)</topic><topic>Integer lattice</topic><topic>Lower bounds</topic><topic>Mathematical analysis</topic><topic>Polynomials</topic><topic>Quasiconvex function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Veselov, S.I.</creatorcontrib><creatorcontrib>Gribanov, D.V.</creatorcontrib><creatorcontrib>Zolotykh, N.Yu</creatorcontrib><creatorcontrib>Chirkov, A.Yu</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Veselov, S.I.</au><au>Gribanov, D.V.</au><au>Zolotykh, N.Yu</au><au>Chirkov, A.Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A polynomial algorithm for minimizing discrete convic functions in fixed dimension</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2020-09-15</date><risdate>2020</risdate><volume>283</volume><spage>11</spage><epage>19</epage><pages>11-19</pages><issn>0166-218X</issn><eissn>1872-6771</eissn><abstract>In Chirkov et al., (2019), classes of conic and discrete conic functions were introduced. In this paper we use the term convic instead conic. The class of convic functions properly includes the classes of convex functions, strictly quasiconvex functions and the class of quasiconvex polynomials. On the other hand, the class of convic functions is properly included in the class of quasiconvex functions. The discrete convic function is a discrete analogue of the convic function. In Chirkov et al., (2019), the lower bound 3n−1log(2ρ−1) for the number of calls to the comparison oracle needed to find the minimum of the discrete convic function defined on integer points of some n-dimensional ball with radius ρ was obtained. But the problem of the existence of a polynomial (in logρ for fixed n) algorithm for minimizing such functions has remained open. In this paper, we answer positively the question of the existence of such an algorithm. Namely, we propose an algorithm for minimizing discrete convic functions that uses 2O(n2logn)logρ calls to the comparison oracle and has 2O(n2logn)poly(logρ) bit complexity.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.dam.2019.10.006</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4542-9233</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0166-218X |
ispartof | Discrete Applied Mathematics, 2020-09, Vol.283, p.11-19 |
issn | 0166-218X 1872-6771 |
language | eng |
recordid | cdi_proquest_journals_2442827293 |
source | Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Comparison oracle convic function Discrete convic function Functions (mathematics) Integer lattice Lower bounds Mathematical analysis Polynomials Quasiconvex function |
title | A polynomial algorithm for minimizing discrete convic functions in fixed dimension |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T12%3A26%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20polynomial%20algorithm%20for%20minimizing%20discrete%20convic%20functions%20in%C2%A0fixed%C2%A0dimension&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=Veselov,%20S.I.&rft.date=2020-09-15&rft.volume=283&rft.spage=11&rft.epage=19&rft.pages=11-19&rft.issn=0166-218X&rft.eissn=1872-6771&rft_id=info:doi/10.1016/j.dam.2019.10.006&rft_dat=%3Cproquest_cross%3E2442827293%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2442827293&rft_id=info:pmid/&rft_els_id=S0166218X19304561&rfr_iscdi=true |