The -branching problem in digraphs

In this paper, we introduce the concept of b-branchings in digraphs, which is a generalization of branchings serving as a counterpart of b-matchings. Here b is a positive integer vector on the vertex set of a digraph D, and a b-branching is defined as a common independent set of two matroids defined...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete Applied Mathematics 2020-09, Vol.283, p.565-576
Hauptverfasser: Kakimura, Naonori, Kamiyama, Naoyuki, Takazawa, Kenjiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 576
container_issue
container_start_page 565
container_title Discrete Applied Mathematics
container_volume 283
creator Kakimura, Naonori
Kamiyama, Naoyuki
Takazawa, Kenjiro
description In this paper, we introduce the concept of b-branchings in digraphs, which is a generalization of branchings serving as a counterpart of b-matchings. Here b is a positive integer vector on the vertex set of a digraph D, and a b-branching is defined as a common independent set of two matroids defined by b: an arc set is a b-branching if it has, for every vertex v of D, at most b(v) arcs entering v, and it is an independent set of a certain sparsity matroid defined by b and D. We demonstrate that b-branchings yield an appropriate generalization of branchings by extending several classic results on branchings. We first present a multi-phase greedy algorithm for finding a maximumweight b-branching. We then prove a packing theorem extending Edmonds’ disjoint branchings theorem, and provide a strongly polynomial algorithm for finding optimal disjoint b-branchings. As a consequence of the packing theorem, we prove the integer decomposition property of the b-branching polytope. Finally, we deal with a further generalization in which a matroid constraint is imposed on the b(v) arcs sharing the terminal vertex v.
doi_str_mv 10.1016/j.dam.2020.02.005
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2442827201</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2442827201</sourcerecordid><originalsourceid>FETCH-proquest_journals_24428272013</originalsourceid><addsrcrecordid>eNqNyksOwiAUhWFiNLE-FuCM6Bi8XCswNxoX0IGzhlrsIy2tYPcvAxfgmfyD8xGyE8AFCHlseWl6joDAATnAeUYSoRUyqZSYkyQayVDox5KsQmghTmiZkH1WW8oKb9yzblxFRz8Une1p42jZVN6MddiQxct0wW5_XZPD7Zpd7iza92TDJ2-Hybt45ZimqFEhiNN_6gsU8TSP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2442827201</pqid></control><display><type>article</type><title>The -branching problem in digraphs</title><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kakimura, Naonori ; Kamiyama, Naoyuki ; Takazawa, Kenjiro</creator><creatorcontrib>Kakimura, Naonori ; Kamiyama, Naoyuki ; Takazawa, Kenjiro</creatorcontrib><description>In this paper, we introduce the concept of b-branchings in digraphs, which is a generalization of branchings serving as a counterpart of b-matchings. Here b is a positive integer vector on the vertex set of a digraph D, and a b-branching is defined as a common independent set of two matroids defined by b: an arc set is a b-branching if it has, for every vertex v of D, at most b(v) arcs entering v, and it is an independent set of a certain sparsity matroid defined by b and D. We demonstrate that b-branchings yield an appropriate generalization of branchings by extending several classic results on branchings. We first present a multi-phase greedy algorithm for finding a maximumweight b-branching. We then prove a packing theorem extending Edmonds’ disjoint branchings theorem, and provide a strongly polynomial algorithm for finding optimal disjoint b-branchings. As a consequence of the packing theorem, we prove the integer decomposition property of the b-branching polytope. Finally, we deal with a further generalization in which a matroid constraint is imposed on the b(v) arcs sharing the terminal vertex v.</description><identifier>ISSN: 0166-218X</identifier><identifier>EISSN: 1872-6771</identifier><identifier>DOI: 10.1016/j.dam.2020.02.005</identifier><language>eng</language><publisher>Amsterdam: Elsevier BV</publisher><subject>Graph theory ; Greedy algorithms ; Integers ; Polynomials ; Theorems</subject><ispartof>Discrete Applied Mathematics, 2020-09, Vol.283, p.565-576</ispartof><rights>Copyright Elsevier BV Sep 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Kakimura, Naonori</creatorcontrib><creatorcontrib>Kamiyama, Naoyuki</creatorcontrib><creatorcontrib>Takazawa, Kenjiro</creatorcontrib><title>The -branching problem in digraphs</title><title>Discrete Applied Mathematics</title><description>In this paper, we introduce the concept of b-branchings in digraphs, which is a generalization of branchings serving as a counterpart of b-matchings. Here b is a positive integer vector on the vertex set of a digraph D, and a b-branching is defined as a common independent set of two matroids defined by b: an arc set is a b-branching if it has, for every vertex v of D, at most b(v) arcs entering v, and it is an independent set of a certain sparsity matroid defined by b and D. We demonstrate that b-branchings yield an appropriate generalization of branchings by extending several classic results on branchings. We first present a multi-phase greedy algorithm for finding a maximumweight b-branching. We then prove a packing theorem extending Edmonds’ disjoint branchings theorem, and provide a strongly polynomial algorithm for finding optimal disjoint b-branchings. As a consequence of the packing theorem, we prove the integer decomposition property of the b-branching polytope. Finally, we deal with a further generalization in which a matroid constraint is imposed on the b(v) arcs sharing the terminal vertex v.</description><subject>Graph theory</subject><subject>Greedy algorithms</subject><subject>Integers</subject><subject>Polynomials</subject><subject>Theorems</subject><issn>0166-218X</issn><issn>1872-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNyksOwiAUhWFiNLE-FuCM6Bi8XCswNxoX0IGzhlrsIy2tYPcvAxfgmfyD8xGyE8AFCHlseWl6joDAATnAeUYSoRUyqZSYkyQayVDox5KsQmghTmiZkH1WW8oKb9yzblxFRz8Une1p42jZVN6MddiQxct0wW5_XZPD7Zpd7iza92TDJ2-Hybt45ZimqFEhiNN_6gsU8TSP</recordid><startdate>20200915</startdate><enddate>20200915</enddate><creator>Kakimura, Naonori</creator><creator>Kamiyama, Naoyuki</creator><creator>Takazawa, Kenjiro</creator><general>Elsevier BV</general><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20200915</creationdate><title>The -branching problem in digraphs</title><author>Kakimura, Naonori ; Kamiyama, Naoyuki ; Takazawa, Kenjiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24428272013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Graph theory</topic><topic>Greedy algorithms</topic><topic>Integers</topic><topic>Polynomials</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kakimura, Naonori</creatorcontrib><creatorcontrib>Kamiyama, Naoyuki</creatorcontrib><creatorcontrib>Takazawa, Kenjiro</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kakimura, Naonori</au><au>Kamiyama, Naoyuki</au><au>Takazawa, Kenjiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The -branching problem in digraphs</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2020-09-15</date><risdate>2020</risdate><volume>283</volume><spage>565</spage><epage>576</epage><pages>565-576</pages><issn>0166-218X</issn><eissn>1872-6771</eissn><abstract>In this paper, we introduce the concept of b-branchings in digraphs, which is a generalization of branchings serving as a counterpart of b-matchings. Here b is a positive integer vector on the vertex set of a digraph D, and a b-branching is defined as a common independent set of two matroids defined by b: an arc set is a b-branching if it has, for every vertex v of D, at most b(v) arcs entering v, and it is an independent set of a certain sparsity matroid defined by b and D. We demonstrate that b-branchings yield an appropriate generalization of branchings by extending several classic results on branchings. We first present a multi-phase greedy algorithm for finding a maximumweight b-branching. We then prove a packing theorem extending Edmonds’ disjoint branchings theorem, and provide a strongly polynomial algorithm for finding optimal disjoint b-branchings. As a consequence of the packing theorem, we prove the integer decomposition property of the b-branching polytope. Finally, we deal with a further generalization in which a matroid constraint is imposed on the b(v) arcs sharing the terminal vertex v.</abstract><cop>Amsterdam</cop><pub>Elsevier BV</pub><doi>10.1016/j.dam.2020.02.005</doi></addata></record>
fulltext fulltext
identifier ISSN: 0166-218X
ispartof Discrete Applied Mathematics, 2020-09, Vol.283, p.565-576
issn 0166-218X
1872-6771
language eng
recordid cdi_proquest_journals_2442827201
source Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
subjects Graph theory
Greedy algorithms
Integers
Polynomials
Theorems
title The -branching problem in digraphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T16%3A51%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20-branching%20problem%20in%20digraphs&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=Kakimura,%20Naonori&rft.date=2020-09-15&rft.volume=283&rft.spage=565&rft.epage=576&rft.pages=565-576&rft.issn=0166-218X&rft.eissn=1872-6771&rft_id=info:doi/10.1016/j.dam.2020.02.005&rft_dat=%3Cproquest%3E2442827201%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2442827201&rft_id=info:pmid/&rfr_iscdi=true