Principle Component Analysis for Classification of the Quality of Aromatic Rice

This research introduces an instrument for performing quality control on aromatic rice by utilizing feature extraction of Principle Component Analysis (PCA) method. Our proposed system (DNose v0.2) uses the principle of electronic nose or enose. Enose is a detector instrument that work based on clas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-09
Hauptverfasser: Kartikadarma, Etika, Wijayanti, Sari, Wulandari, Sari Ayu, Fauzi Adi Rafrastara
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Kartikadarma, Etika
Wijayanti, Sari
Wulandari, Sari Ayu
Fauzi Adi Rafrastara
description This research introduces an instrument for performing quality control on aromatic rice by utilizing feature extraction of Principle Component Analysis (PCA) method. Our proposed system (DNose v0.2) uses the principle of electronic nose or enose. Enose is a detector instrument that work based on classification of the smell, like function of human nose. It has to be trained first for recognizing the smell before work in classification process. The aim of this research is to build an enose system for quality control instrument, especially on aromatic rice. The advantage of this system is easy to operate and not damaging the object of research. In this experiment, ATMega 328 and 6 gas sensors are involved in the electronic module and PCA method is used for classification process.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2442689329</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2442689329</sourcerecordid><originalsourceid>FETCH-proquest_journals_24426893293</originalsourceid><addsrcrecordid>eNqNjM0KgkAURocgSMp3GGgt2B01XYoU7fqhvQzDSCPjXJs7Lnz7DHqAVh-Hc_hWLAIhDkmZAWxYTNSnaQrFEfJcROx688YpM1rNGxxGdNoFXjtpZzLEO_S8sZLIdEbJYNBx7Hh4aX6fpDVh_mLtcVic4g-j9I6tO2lJx7_dsv359GwuyejxPWkKbY-TX_6phSyDoqwEVOK_6gMiZT6N</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2442689329</pqid></control><display><type>article</type><title>Principle Component Analysis for Classification of the Quality of Aromatic Rice</title><source>Free E- Journals</source><creator>Kartikadarma, Etika ; Wijayanti, Sari ; Wulandari, Sari Ayu ; Fauzi Adi Rafrastara</creator><creatorcontrib>Kartikadarma, Etika ; Wijayanti, Sari ; Wulandari, Sari Ayu ; Fauzi Adi Rafrastara</creatorcontrib><description>This research introduces an instrument for performing quality control on aromatic rice by utilizing feature extraction of Principle Component Analysis (PCA) method. Our proposed system (DNose v0.2) uses the principle of electronic nose or enose. Enose is a detector instrument that work based on classification of the smell, like function of human nose. It has to be trained first for recognizing the smell before work in classification process. The aim of this research is to build an enose system for quality control instrument, especially on aromatic rice. The advantage of this system is easy to operate and not damaging the object of research. In this experiment, ATMega 328 and 6 gas sensors are involved in the electronic module and PCA method is used for classification process.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Classification ; Control equipment ; Electronic noses ; Feature extraction ; Gas sensors ; Principal components analysis ; Quality control ; Smell</subject><ispartof>arXiv.org, 2020-09</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Kartikadarma, Etika</creatorcontrib><creatorcontrib>Wijayanti, Sari</creatorcontrib><creatorcontrib>Wulandari, Sari Ayu</creatorcontrib><creatorcontrib>Fauzi Adi Rafrastara</creatorcontrib><title>Principle Component Analysis for Classification of the Quality of Aromatic Rice</title><title>arXiv.org</title><description>This research introduces an instrument for performing quality control on aromatic rice by utilizing feature extraction of Principle Component Analysis (PCA) method. Our proposed system (DNose v0.2) uses the principle of electronic nose or enose. Enose is a detector instrument that work based on classification of the smell, like function of human nose. It has to be trained first for recognizing the smell before work in classification process. The aim of this research is to build an enose system for quality control instrument, especially on aromatic rice. The advantage of this system is easy to operate and not damaging the object of research. In this experiment, ATMega 328 and 6 gas sensors are involved in the electronic module and PCA method is used for classification process.</description><subject>Classification</subject><subject>Control equipment</subject><subject>Electronic noses</subject><subject>Feature extraction</subject><subject>Gas sensors</subject><subject>Principal components analysis</subject><subject>Quality control</subject><subject>Smell</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjM0KgkAURocgSMp3GGgt2B01XYoU7fqhvQzDSCPjXJs7Lnz7DHqAVh-Hc_hWLAIhDkmZAWxYTNSnaQrFEfJcROx688YpM1rNGxxGdNoFXjtpZzLEO_S8sZLIdEbJYNBx7Hh4aX6fpDVh_mLtcVic4g-j9I6tO2lJx7_dsv359GwuyejxPWkKbY-TX_6phSyDoqwEVOK_6gMiZT6N</recordid><startdate>20200914</startdate><enddate>20200914</enddate><creator>Kartikadarma, Etika</creator><creator>Wijayanti, Sari</creator><creator>Wulandari, Sari Ayu</creator><creator>Fauzi Adi Rafrastara</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200914</creationdate><title>Principle Component Analysis for Classification of the Quality of Aromatic Rice</title><author>Kartikadarma, Etika ; Wijayanti, Sari ; Wulandari, Sari Ayu ; Fauzi Adi Rafrastara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24426893293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Classification</topic><topic>Control equipment</topic><topic>Electronic noses</topic><topic>Feature extraction</topic><topic>Gas sensors</topic><topic>Principal components analysis</topic><topic>Quality control</topic><topic>Smell</topic><toplevel>online_resources</toplevel><creatorcontrib>Kartikadarma, Etika</creatorcontrib><creatorcontrib>Wijayanti, Sari</creatorcontrib><creatorcontrib>Wulandari, Sari Ayu</creatorcontrib><creatorcontrib>Fauzi Adi Rafrastara</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kartikadarma, Etika</au><au>Wijayanti, Sari</au><au>Wulandari, Sari Ayu</au><au>Fauzi Adi Rafrastara</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Principle Component Analysis for Classification of the Quality of Aromatic Rice</atitle><jtitle>arXiv.org</jtitle><date>2020-09-14</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>This research introduces an instrument for performing quality control on aromatic rice by utilizing feature extraction of Principle Component Analysis (PCA) method. Our proposed system (DNose v0.2) uses the principle of electronic nose or enose. Enose is a detector instrument that work based on classification of the smell, like function of human nose. It has to be trained first for recognizing the smell before work in classification process. The aim of this research is to build an enose system for quality control instrument, especially on aromatic rice. The advantage of this system is easy to operate and not damaging the object of research. In this experiment, ATMega 328 and 6 gas sensors are involved in the electronic module and PCA method is used for classification process.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2442689329
source Free E- Journals
subjects Classification
Control equipment
Electronic noses
Feature extraction
Gas sensors
Principal components analysis
Quality control
Smell
title Principle Component Analysis for Classification of the Quality of Aromatic Rice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T01%3A23%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Principle%20Component%20Analysis%20for%20Classification%20of%20the%20Quality%20of%20Aromatic%20Rice&rft.jtitle=arXiv.org&rft.au=Kartikadarma,%20Etika&rft.date=2020-09-14&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2442689329%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2442689329&rft_id=info:pmid/&rfr_iscdi=true