Prototype of a segmented scintillator detector for particle flux measurements on spacecraft

In this paper, we introduce a laboratory prototype of a solar energetic particle (SEP) detector which will operate along with other space-based instruments to give us more insight into the SEP physics. The instrument is designed to detect protons and electrons with kinetic energies from 10 to 100 Me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of instrumentation 2020-09, Vol.15 (9), p.T09006-T09006
Hauptverfasser: Stadnichuk, E., Abramova, T., Zelenyi, M., Izvestnyy, A., Nozik, A., Palmin, V., Zimovets, I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page T09006
container_issue 9
container_start_page T09006
container_title Journal of instrumentation
container_volume 15
creator Stadnichuk, E.
Abramova, T.
Zelenyi, M.
Izvestnyy, A.
Nozik, A.
Palmin, V.
Zimovets, I.
description In this paper, we introduce a laboratory prototype of a solar energetic particle (SEP) detector which will operate along with other space-based instruments to give us more insight into the SEP physics. The instrument is designed to detect protons and electrons with kinetic energies from 10 to 100 MeV and from 1 to 10 MeV respectively. The detector is based on a scintillation cylinder divided into separated disks to get more information about detected particles. Scintillation light from isolated segments is collected by optical fibers and registered with silicon photo-multipliers (SiPM). The work contains the result of laboratory testing of the detector prototype. The detector channels were calibrated, energy resolution for every channel was obtained. Moreover, we present an advanced integral data acquisition and analysis technique based on Bayesian statistics, which will allow operation even during SEP events with very large fluxes. The work is motivated by the need for better measurement tools to study acceleration and transport of SEP in the heliosphere as well as by the need for the monitoring tool to mitigate radiation hazard for equipment and people in space.
doi_str_mv 10.1088/1748-0221/15/09/T09006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2442626643</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2442626643</sourcerecordid><originalsourceid>FETCH-LOGICAL-c283t-d79251ce17d5568f7a067608a47b28113be2b6c4df4a1ce0aac07ee5bb098b713</originalsourceid><addsrcrecordid>eNpNkE1LxDAQhoMouK7-BQl4rp2kbZIeZfELBD2sJw8hTSfSpdvUJAX339uyIh6GeWGemYGHkGsGtwyUypksVQacs5xVOdT5FmoAcUJWf4PTf_mcXMS4A6jqqoQV-XgLPvl0GJF6Rw2N-LnHIWFLo-2G1PW9ST7QFhPaJbi5RhNSZ3ukrp--6R5NnAIuW5H6gcbRWLTBuHRJzpzpI1799jV5f7jfbp6yl9fH583dS2a5KlLWyppXzCKTbVUJ5aQBIQUoU8qGK8aKBnkjbNm60swYGGNBIlZNA7VqJCvW5OZ4dwz-a8KY9M5PYZhfal6WXHAhymKmxJGywccY0OkxdHsTDpqBXkTqxZFeHGlWaaj1UWTxA1CjZ9c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2442626643</pqid></control><display><type>article</type><title>Prototype of a segmented scintillator detector for particle flux measurements on spacecraft</title><source>Institute of Physics Journals</source><creator>Stadnichuk, E. ; Abramova, T. ; Zelenyi, M. ; Izvestnyy, A. ; Nozik, A. ; Palmin, V. ; Zimovets, I.</creator><creatorcontrib>Stadnichuk, E. ; Abramova, T. ; Zelenyi, M. ; Izvestnyy, A. ; Nozik, A. ; Palmin, V. ; Zimovets, I.</creatorcontrib><description>In this paper, we introduce a laboratory prototype of a solar energetic particle (SEP) detector which will operate along with other space-based instruments to give us more insight into the SEP physics. The instrument is designed to detect protons and electrons with kinetic energies from 10 to 100 MeV and from 1 to 10 MeV respectively. The detector is based on a scintillation cylinder divided into separated disks to get more information about detected particles. Scintillation light from isolated segments is collected by optical fibers and registered with silicon photo-multipliers (SiPM). The work contains the result of laboratory testing of the detector prototype. The detector channels were calibrated, energy resolution for every channel was obtained. Moreover, we present an advanced integral data acquisition and analysis technique based on Bayesian statistics, which will allow operation even during SEP events with very large fluxes. The work is motivated by the need for better measurement tools to study acceleration and transport of SEP in the heliosphere as well as by the need for the monitoring tool to mitigate radiation hazard for equipment and people in space.</description><identifier>ISSN: 1748-0221</identifier><identifier>EISSN: 1748-0221</identifier><identifier>DOI: 10.1088/1748-0221/15/09/T09006</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Disks ; Energetic particles ; Energy resolution ; Fluxes ; Heliosphere ; Laboratories ; Laboratory tests ; Optical fibers ; Prototypes ; Radiation hazards ; Scintillation ; Scintillation counters ; Sensors</subject><ispartof>Journal of instrumentation, 2020-09, Vol.15 (9), p.T09006-T09006</ispartof><rights>Copyright IOP Publishing Sep 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c283t-d79251ce17d5568f7a067608a47b28113be2b6c4df4a1ce0aac07ee5bb098b713</citedby><cites>FETCH-LOGICAL-c283t-d79251ce17d5568f7a067608a47b28113be2b6c4df4a1ce0aac07ee5bb098b713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Stadnichuk, E.</creatorcontrib><creatorcontrib>Abramova, T.</creatorcontrib><creatorcontrib>Zelenyi, M.</creatorcontrib><creatorcontrib>Izvestnyy, A.</creatorcontrib><creatorcontrib>Nozik, A.</creatorcontrib><creatorcontrib>Palmin, V.</creatorcontrib><creatorcontrib>Zimovets, I.</creatorcontrib><title>Prototype of a segmented scintillator detector for particle flux measurements on spacecraft</title><title>Journal of instrumentation</title><description>In this paper, we introduce a laboratory prototype of a solar energetic particle (SEP) detector which will operate along with other space-based instruments to give us more insight into the SEP physics. The instrument is designed to detect protons and electrons with kinetic energies from 10 to 100 MeV and from 1 to 10 MeV respectively. The detector is based on a scintillation cylinder divided into separated disks to get more information about detected particles. Scintillation light from isolated segments is collected by optical fibers and registered with silicon photo-multipliers (SiPM). The work contains the result of laboratory testing of the detector prototype. The detector channels were calibrated, energy resolution for every channel was obtained. Moreover, we present an advanced integral data acquisition and analysis technique based on Bayesian statistics, which will allow operation even during SEP events with very large fluxes. The work is motivated by the need for better measurement tools to study acceleration and transport of SEP in the heliosphere as well as by the need for the monitoring tool to mitigate radiation hazard for equipment and people in space.</description><subject>Disks</subject><subject>Energetic particles</subject><subject>Energy resolution</subject><subject>Fluxes</subject><subject>Heliosphere</subject><subject>Laboratories</subject><subject>Laboratory tests</subject><subject>Optical fibers</subject><subject>Prototypes</subject><subject>Radiation hazards</subject><subject>Scintillation</subject><subject>Scintillation counters</subject><subject>Sensors</subject><issn>1748-0221</issn><issn>1748-0221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpNkE1LxDAQhoMouK7-BQl4rp2kbZIeZfELBD2sJw8hTSfSpdvUJAX339uyIh6GeWGemYGHkGsGtwyUypksVQacs5xVOdT5FmoAcUJWf4PTf_mcXMS4A6jqqoQV-XgLPvl0GJF6Rw2N-LnHIWFLo-2G1PW9ST7QFhPaJbi5RhNSZ3ukrp--6R5NnAIuW5H6gcbRWLTBuHRJzpzpI1799jV5f7jfbp6yl9fH583dS2a5KlLWyppXzCKTbVUJ5aQBIQUoU8qGK8aKBnkjbNm60swYGGNBIlZNA7VqJCvW5OZ4dwz-a8KY9M5PYZhfal6WXHAhymKmxJGywccY0OkxdHsTDpqBXkTqxZFeHGlWaaj1UWTxA1CjZ9c</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Stadnichuk, E.</creator><creator>Abramova, T.</creator><creator>Zelenyi, M.</creator><creator>Izvestnyy, A.</creator><creator>Nozik, A.</creator><creator>Palmin, V.</creator><creator>Zimovets, I.</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20200901</creationdate><title>Prototype of a segmented scintillator detector for particle flux measurements on spacecraft</title><author>Stadnichuk, E. ; Abramova, T. ; Zelenyi, M. ; Izvestnyy, A. ; Nozik, A. ; Palmin, V. ; Zimovets, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c283t-d79251ce17d5568f7a067608a47b28113be2b6c4df4a1ce0aac07ee5bb098b713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Disks</topic><topic>Energetic particles</topic><topic>Energy resolution</topic><topic>Fluxes</topic><topic>Heliosphere</topic><topic>Laboratories</topic><topic>Laboratory tests</topic><topic>Optical fibers</topic><topic>Prototypes</topic><topic>Radiation hazards</topic><topic>Scintillation</topic><topic>Scintillation counters</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stadnichuk, E.</creatorcontrib><creatorcontrib>Abramova, T.</creatorcontrib><creatorcontrib>Zelenyi, M.</creatorcontrib><creatorcontrib>Izvestnyy, A.</creatorcontrib><creatorcontrib>Nozik, A.</creatorcontrib><creatorcontrib>Palmin, V.</creatorcontrib><creatorcontrib>Zimovets, I.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of instrumentation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stadnichuk, E.</au><au>Abramova, T.</au><au>Zelenyi, M.</au><au>Izvestnyy, A.</au><au>Nozik, A.</au><au>Palmin, V.</au><au>Zimovets, I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prototype of a segmented scintillator detector for particle flux measurements on spacecraft</atitle><jtitle>Journal of instrumentation</jtitle><date>2020-09-01</date><risdate>2020</risdate><volume>15</volume><issue>9</issue><spage>T09006</spage><epage>T09006</epage><pages>T09006-T09006</pages><issn>1748-0221</issn><eissn>1748-0221</eissn><abstract>In this paper, we introduce a laboratory prototype of a solar energetic particle (SEP) detector which will operate along with other space-based instruments to give us more insight into the SEP physics. The instrument is designed to detect protons and electrons with kinetic energies from 10 to 100 MeV and from 1 to 10 MeV respectively. The detector is based on a scintillation cylinder divided into separated disks to get more information about detected particles. Scintillation light from isolated segments is collected by optical fibers and registered with silicon photo-multipliers (SiPM). The work contains the result of laboratory testing of the detector prototype. The detector channels were calibrated, energy resolution for every channel was obtained. Moreover, we present an advanced integral data acquisition and analysis technique based on Bayesian statistics, which will allow operation even during SEP events with very large fluxes. The work is motivated by the need for better measurement tools to study acceleration and transport of SEP in the heliosphere as well as by the need for the monitoring tool to mitigate radiation hazard for equipment and people in space.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1748-0221/15/09/T09006</doi></addata></record>
fulltext fulltext
identifier ISSN: 1748-0221
ispartof Journal of instrumentation, 2020-09, Vol.15 (9), p.T09006-T09006
issn 1748-0221
1748-0221
language eng
recordid cdi_proquest_journals_2442626643
source Institute of Physics Journals
subjects Disks
Energetic particles
Energy resolution
Fluxes
Heliosphere
Laboratories
Laboratory tests
Optical fibers
Prototypes
Radiation hazards
Scintillation
Scintillation counters
Sensors
title Prototype of a segmented scintillator detector for particle flux measurements on spacecraft
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T13%3A39%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prototype%20of%20a%20segmented%20scintillator%20detector%20for%20particle%20flux%20measurements%20on%20spacecraft&rft.jtitle=Journal%20of%20instrumentation&rft.au=Stadnichuk,%20E.&rft.date=2020-09-01&rft.volume=15&rft.issue=9&rft.spage=T09006&rft.epage=T09006&rft.pages=T09006-T09006&rft.issn=1748-0221&rft.eissn=1748-0221&rft_id=info:doi/10.1088/1748-0221/15/09/T09006&rft_dat=%3Cproquest_cross%3E2442626643%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2442626643&rft_id=info:pmid/&rfr_iscdi=true