Mesh Denoising via a Novel Mumford–Shah Framework
In this paper, we introduce a Mumford–Shah framework to restore the face normal field on the triangulated surface. To effectively discretize Γ-convergence approximation of the Mumford–Shah model, we first define an edge function space and its associated differential operators. They are helpful for d...
Gespeichert in:
Veröffentlicht in: | Computer aided design 2020-09, Vol.126, p.102858, Article 102858 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 102858 |
container_title | Computer aided design |
container_volume | 126 |
creator | Liu, Zheng Wang, Weina Zhong, Saishang Zeng, Bohong Liu, Jinqin Wang, Weiming |
description | In this paper, we introduce a Mumford–Shah framework to restore the face normal field on the triangulated surface. To effectively discretize Γ-convergence approximation of the Mumford–Shah model, we first define an edge function space and its associated differential operators. They are helpful for directly diffusing the discontinuity function over mesh edges instead of computing the approximated discontinuity function via pointwise diffusion in existing discretizations. Then, by using the operators in the proposed function space, two Mumford–Shah-based denoising methods are presented, which can produce denoised results with neat geometric features and locate geometric discontinuities exactly. Our Mumford–Shah framework overcomes the limitations of existing techniques that blur the discontinuity function, be less able to preserve geometric features, be sensitive to surface sampling, and require a postprocessing to form feature curves from located discontinuity vertices. Intensive experimental results on a variety of surfaces show the superiority of our denoising methods qualitatively and quantitatively.
[Display omitted]
•Two coupled function spaces and associated operators are given out over meshes, which can describe the edge function space and its operators for directly diffusing the function over edges.•Two Mumford–Shah-based models are formulated in the proposed function spaces, which are more able to produce high quality denoised results with neat features and at the same time locate discontinuities accurately.•Two efficient algorithms based on alternating minimization are presented to solve the proposed Mumford–Shah regularizations. |
doi_str_mv | 10.1016/j.cad.2020.102858 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2442620554</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010448520300518</els_id><sourcerecordid>2442620554</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-1486bfdbae1e90a2adbf09e1c210e0e7a17fc87cd2788fc57da23d8c2015fa7c3</originalsourceid><addsrcrecordid>eNp9kEFOwzAQRS0EEqVwAHaRWKeMnTh2xAoBBaQWFsDacu0xdWjjYrdF7LgDN-QkpAprVqOR_vszeoScUhhRoNV5MzLajhiw3c4kl3tkQKWoc1ZJvk8GABTyspT8kByl1AAAo0U9IMUU0zy7xjb45NvXbOt1prOHsMVFNt0sXYj25-v7aa7n2TjqJX6E-HZMDpxeJDz5m0PyMr55vrrLJ4-391eXk9wUjK9zWspq5uxMI8UaNNN25qBGahgFBBSaCmekMJYJKZ3hwmpWWGkYUO60MMWQnPW9qxjeN5jWqgmb2HYnFStLVjHgvOxStE-ZGFKK6NQq-qWOn4qC2rlRjercqJ0b1bvpmIuewe79rceokvHYGrQ-olkrG_w_9C8BjmvU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2442620554</pqid></control><display><type>article</type><title>Mesh Denoising via a Novel Mumford–Shah Framework</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Liu, Zheng ; Wang, Weina ; Zhong, Saishang ; Zeng, Bohong ; Liu, Jinqin ; Wang, Weiming</creator><creatorcontrib>Liu, Zheng ; Wang, Weina ; Zhong, Saishang ; Zeng, Bohong ; Liu, Jinqin ; Wang, Weiming</creatorcontrib><description>In this paper, we introduce a Mumford–Shah framework to restore the face normal field on the triangulated surface. To effectively discretize Γ-convergence approximation of the Mumford–Shah model, we first define an edge function space and its associated differential operators. They are helpful for directly diffusing the discontinuity function over mesh edges instead of computing the approximated discontinuity function via pointwise diffusion in existing discretizations. Then, by using the operators in the proposed function space, two Mumford–Shah-based denoising methods are presented, which can produce denoised results with neat geometric features and locate geometric discontinuities exactly. Our Mumford–Shah framework overcomes the limitations of existing techniques that blur the discontinuity function, be less able to preserve geometric features, be sensitive to surface sampling, and require a postprocessing to form feature curves from located discontinuity vertices. Intensive experimental results on a variety of surfaces show the superiority of our denoising methods qualitatively and quantitatively.
[Display omitted]
•Two coupled function spaces and associated operators are given out over meshes, which can describe the edge function space and its operators for directly diffusing the function over edges.•Two Mumford–Shah-based models are formulated in the proposed function spaces, which are more able to produce high quality denoised results with neat features and at the same time locate discontinuities accurately.•Two efficient algorithms based on alternating minimization are presented to solve the proposed Mumford–Shah regularizations.</description><identifier>ISSN: 0010-4485</identifier><identifier>EISSN: 1879-2685</identifier><identifier>DOI: 10.1016/j.cad.2020.102858</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>[formula omitted]-convergence approximation ; Apexes ; Differential equations ; Discontinuity ; Feature preserving ; Finite element method ; Function space ; Mesh denoising ; Mumford–Shah functional ; Noise reduction ; Operators (mathematics)</subject><ispartof>Computer aided design, 2020-09, Vol.126, p.102858, Article 102858</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Sep 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-1486bfdbae1e90a2adbf09e1c210e0e7a17fc87cd2788fc57da23d8c2015fa7c3</citedby><cites>FETCH-LOGICAL-c325t-1486bfdbae1e90a2adbf09e1c210e0e7a17fc87cd2788fc57da23d8c2015fa7c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cad.2020.102858$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Liu, Zheng</creatorcontrib><creatorcontrib>Wang, Weina</creatorcontrib><creatorcontrib>Zhong, Saishang</creatorcontrib><creatorcontrib>Zeng, Bohong</creatorcontrib><creatorcontrib>Liu, Jinqin</creatorcontrib><creatorcontrib>Wang, Weiming</creatorcontrib><title>Mesh Denoising via a Novel Mumford–Shah Framework</title><title>Computer aided design</title><description>In this paper, we introduce a Mumford–Shah framework to restore the face normal field on the triangulated surface. To effectively discretize Γ-convergence approximation of the Mumford–Shah model, we first define an edge function space and its associated differential operators. They are helpful for directly diffusing the discontinuity function over mesh edges instead of computing the approximated discontinuity function via pointwise diffusion in existing discretizations. Then, by using the operators in the proposed function space, two Mumford–Shah-based denoising methods are presented, which can produce denoised results with neat geometric features and locate geometric discontinuities exactly. Our Mumford–Shah framework overcomes the limitations of existing techniques that blur the discontinuity function, be less able to preserve geometric features, be sensitive to surface sampling, and require a postprocessing to form feature curves from located discontinuity vertices. Intensive experimental results on a variety of surfaces show the superiority of our denoising methods qualitatively and quantitatively.
[Display omitted]
•Two coupled function spaces and associated operators are given out over meshes, which can describe the edge function space and its operators for directly diffusing the function over edges.•Two Mumford–Shah-based models are formulated in the proposed function spaces, which are more able to produce high quality denoised results with neat features and at the same time locate discontinuities accurately.•Two efficient algorithms based on alternating minimization are presented to solve the proposed Mumford–Shah regularizations.</description><subject>[formula omitted]-convergence approximation</subject><subject>Apexes</subject><subject>Differential equations</subject><subject>Discontinuity</subject><subject>Feature preserving</subject><subject>Finite element method</subject><subject>Function space</subject><subject>Mesh denoising</subject><subject>Mumford–Shah functional</subject><subject>Noise reduction</subject><subject>Operators (mathematics)</subject><issn>0010-4485</issn><issn>1879-2685</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEFOwzAQRS0EEqVwAHaRWKeMnTh2xAoBBaQWFsDacu0xdWjjYrdF7LgDN-QkpAprVqOR_vszeoScUhhRoNV5MzLajhiw3c4kl3tkQKWoc1ZJvk8GABTyspT8kByl1AAAo0U9IMUU0zy7xjb45NvXbOt1prOHsMVFNt0sXYj25-v7aa7n2TjqJX6E-HZMDpxeJDz5m0PyMr55vrrLJ4-391eXk9wUjK9zWspq5uxMI8UaNNN25qBGahgFBBSaCmekMJYJKZ3hwmpWWGkYUO60MMWQnPW9qxjeN5jWqgmb2HYnFStLVjHgvOxStE-ZGFKK6NQq-qWOn4qC2rlRjercqJ0b1bvpmIuewe79rceokvHYGrQ-olkrG_w_9C8BjmvU</recordid><startdate>202009</startdate><enddate>202009</enddate><creator>Liu, Zheng</creator><creator>Wang, Weina</creator><creator>Zhong, Saishang</creator><creator>Zeng, Bohong</creator><creator>Liu, Jinqin</creator><creator>Wang, Weiming</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202009</creationdate><title>Mesh Denoising via a Novel Mumford–Shah Framework</title><author>Liu, Zheng ; Wang, Weina ; Zhong, Saishang ; Zeng, Bohong ; Liu, Jinqin ; Wang, Weiming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-1486bfdbae1e90a2adbf09e1c210e0e7a17fc87cd2788fc57da23d8c2015fa7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>[formula omitted]-convergence approximation</topic><topic>Apexes</topic><topic>Differential equations</topic><topic>Discontinuity</topic><topic>Feature preserving</topic><topic>Finite element method</topic><topic>Function space</topic><topic>Mesh denoising</topic><topic>Mumford–Shah functional</topic><topic>Noise reduction</topic><topic>Operators (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Zheng</creatorcontrib><creatorcontrib>Wang, Weina</creatorcontrib><creatorcontrib>Zhong, Saishang</creatorcontrib><creatorcontrib>Zeng, Bohong</creatorcontrib><creatorcontrib>Liu, Jinqin</creatorcontrib><creatorcontrib>Wang, Weiming</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer aided design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Zheng</au><au>Wang, Weina</au><au>Zhong, Saishang</au><au>Zeng, Bohong</au><au>Liu, Jinqin</au><au>Wang, Weiming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mesh Denoising via a Novel Mumford–Shah Framework</atitle><jtitle>Computer aided design</jtitle><date>2020-09</date><risdate>2020</risdate><volume>126</volume><spage>102858</spage><pages>102858-</pages><artnum>102858</artnum><issn>0010-4485</issn><eissn>1879-2685</eissn><abstract>In this paper, we introduce a Mumford–Shah framework to restore the face normal field on the triangulated surface. To effectively discretize Γ-convergence approximation of the Mumford–Shah model, we first define an edge function space and its associated differential operators. They are helpful for directly diffusing the discontinuity function over mesh edges instead of computing the approximated discontinuity function via pointwise diffusion in existing discretizations. Then, by using the operators in the proposed function space, two Mumford–Shah-based denoising methods are presented, which can produce denoised results with neat geometric features and locate geometric discontinuities exactly. Our Mumford–Shah framework overcomes the limitations of existing techniques that blur the discontinuity function, be less able to preserve geometric features, be sensitive to surface sampling, and require a postprocessing to form feature curves from located discontinuity vertices. Intensive experimental results on a variety of surfaces show the superiority of our denoising methods qualitatively and quantitatively.
[Display omitted]
•Two coupled function spaces and associated operators are given out over meshes, which can describe the edge function space and its operators for directly diffusing the function over edges.•Two Mumford–Shah-based models are formulated in the proposed function spaces, which are more able to produce high quality denoised results with neat features and at the same time locate discontinuities accurately.•Two efficient algorithms based on alternating minimization are presented to solve the proposed Mumford–Shah regularizations.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cad.2020.102858</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-4485 |
ispartof | Computer aided design, 2020-09, Vol.126, p.102858, Article 102858 |
issn | 0010-4485 1879-2685 |
language | eng |
recordid | cdi_proquest_journals_2442620554 |
source | Elsevier ScienceDirect Journals Complete |
subjects | [formula omitted]-convergence approximation Apexes Differential equations Discontinuity Feature preserving Finite element method Function space Mesh denoising Mumford–Shah functional Noise reduction Operators (mathematics) |
title | Mesh Denoising via a Novel Mumford–Shah Framework |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T15%3A16%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mesh%20Denoising%20via%20a%20Novel%20Mumford%E2%80%93Shah%20Framework&rft.jtitle=Computer%20aided%20design&rft.au=Liu,%20Zheng&rft.date=2020-09&rft.volume=126&rft.spage=102858&rft.pages=102858-&rft.artnum=102858&rft.issn=0010-4485&rft.eissn=1879-2685&rft_id=info:doi/10.1016/j.cad.2020.102858&rft_dat=%3Cproquest_cross%3E2442620554%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2442620554&rft_id=info:pmid/&rft_els_id=S0010448520300518&rfr_iscdi=true |