Mesh Denoising via a Novel Mumford–Shah Framework

In this paper, we introduce a Mumford–Shah framework to restore the face normal field on the triangulated surface. To effectively discretize Γ-convergence approximation of the Mumford–Shah model, we first define an edge function space and its associated differential operators. They are helpful for d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer aided design 2020-09, Vol.126, p.102858, Article 102858
Hauptverfasser: Liu, Zheng, Wang, Weina, Zhong, Saishang, Zeng, Bohong, Liu, Jinqin, Wang, Weiming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 102858
container_title Computer aided design
container_volume 126
creator Liu, Zheng
Wang, Weina
Zhong, Saishang
Zeng, Bohong
Liu, Jinqin
Wang, Weiming
description In this paper, we introduce a Mumford–Shah framework to restore the face normal field on the triangulated surface. To effectively discretize Γ-convergence approximation of the Mumford–Shah model, we first define an edge function space and its associated differential operators. They are helpful for directly diffusing the discontinuity function over mesh edges instead of computing the approximated discontinuity function via pointwise diffusion in existing discretizations. Then, by using the operators in the proposed function space, two Mumford–Shah-based denoising methods are presented, which can produce denoised results with neat geometric features and locate geometric discontinuities exactly. Our Mumford–Shah framework overcomes the limitations of existing techniques that blur the discontinuity function, be less able to preserve geometric features, be sensitive to surface sampling, and require a postprocessing to form feature curves from located discontinuity vertices. Intensive experimental results on a variety of surfaces show the superiority of our denoising methods qualitatively and quantitatively. [Display omitted] •Two coupled function spaces and associated operators are given out over meshes, which can describe the edge function space and its operators for directly diffusing the function over edges.•Two Mumford–Shah-based models are formulated in the proposed function spaces, which are more able to produce high quality denoised results with neat features and at the same time locate discontinuities accurately.•Two efficient algorithms based on alternating minimization are presented to solve the proposed Mumford–Shah regularizations.
doi_str_mv 10.1016/j.cad.2020.102858
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2442620554</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010448520300518</els_id><sourcerecordid>2442620554</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-1486bfdbae1e90a2adbf09e1c210e0e7a17fc87cd2788fc57da23d8c2015fa7c3</originalsourceid><addsrcrecordid>eNp9kEFOwzAQRS0EEqVwAHaRWKeMnTh2xAoBBaQWFsDacu0xdWjjYrdF7LgDN-QkpAprVqOR_vszeoScUhhRoNV5MzLajhiw3c4kl3tkQKWoc1ZJvk8GABTyspT8kByl1AAAo0U9IMUU0zy7xjb45NvXbOt1prOHsMVFNt0sXYj25-v7aa7n2TjqJX6E-HZMDpxeJDz5m0PyMr55vrrLJ4-391eXk9wUjK9zWspq5uxMI8UaNNN25qBGahgFBBSaCmekMJYJKZ3hwmpWWGkYUO60MMWQnPW9qxjeN5jWqgmb2HYnFStLVjHgvOxStE-ZGFKK6NQq-qWOn4qC2rlRjercqJ0b1bvpmIuewe79rceokvHYGrQ-olkrG_w_9C8BjmvU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2442620554</pqid></control><display><type>article</type><title>Mesh Denoising via a Novel Mumford–Shah Framework</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Liu, Zheng ; Wang, Weina ; Zhong, Saishang ; Zeng, Bohong ; Liu, Jinqin ; Wang, Weiming</creator><creatorcontrib>Liu, Zheng ; Wang, Weina ; Zhong, Saishang ; Zeng, Bohong ; Liu, Jinqin ; Wang, Weiming</creatorcontrib><description>In this paper, we introduce a Mumford–Shah framework to restore the face normal field on the triangulated surface. To effectively discretize Γ-convergence approximation of the Mumford–Shah model, we first define an edge function space and its associated differential operators. They are helpful for directly diffusing the discontinuity function over mesh edges instead of computing the approximated discontinuity function via pointwise diffusion in existing discretizations. Then, by using the operators in the proposed function space, two Mumford–Shah-based denoising methods are presented, which can produce denoised results with neat geometric features and locate geometric discontinuities exactly. Our Mumford–Shah framework overcomes the limitations of existing techniques that blur the discontinuity function, be less able to preserve geometric features, be sensitive to surface sampling, and require a postprocessing to form feature curves from located discontinuity vertices. Intensive experimental results on a variety of surfaces show the superiority of our denoising methods qualitatively and quantitatively. [Display omitted] •Two coupled function spaces and associated operators are given out over meshes, which can describe the edge function space and its operators for directly diffusing the function over edges.•Two Mumford–Shah-based models are formulated in the proposed function spaces, which are more able to produce high quality denoised results with neat features and at the same time locate discontinuities accurately.•Two efficient algorithms based on alternating minimization are presented to solve the proposed Mumford–Shah regularizations.</description><identifier>ISSN: 0010-4485</identifier><identifier>EISSN: 1879-2685</identifier><identifier>DOI: 10.1016/j.cad.2020.102858</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>[formula omitted]-convergence approximation ; Apexes ; Differential equations ; Discontinuity ; Feature preserving ; Finite element method ; Function space ; Mesh denoising ; Mumford–Shah functional ; Noise reduction ; Operators (mathematics)</subject><ispartof>Computer aided design, 2020-09, Vol.126, p.102858, Article 102858</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Sep 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-1486bfdbae1e90a2adbf09e1c210e0e7a17fc87cd2788fc57da23d8c2015fa7c3</citedby><cites>FETCH-LOGICAL-c325t-1486bfdbae1e90a2adbf09e1c210e0e7a17fc87cd2788fc57da23d8c2015fa7c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cad.2020.102858$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Liu, Zheng</creatorcontrib><creatorcontrib>Wang, Weina</creatorcontrib><creatorcontrib>Zhong, Saishang</creatorcontrib><creatorcontrib>Zeng, Bohong</creatorcontrib><creatorcontrib>Liu, Jinqin</creatorcontrib><creatorcontrib>Wang, Weiming</creatorcontrib><title>Mesh Denoising via a Novel Mumford–Shah Framework</title><title>Computer aided design</title><description>In this paper, we introduce a Mumford–Shah framework to restore the face normal field on the triangulated surface. To effectively discretize Γ-convergence approximation of the Mumford–Shah model, we first define an edge function space and its associated differential operators. They are helpful for directly diffusing the discontinuity function over mesh edges instead of computing the approximated discontinuity function via pointwise diffusion in existing discretizations. Then, by using the operators in the proposed function space, two Mumford–Shah-based denoising methods are presented, which can produce denoised results with neat geometric features and locate geometric discontinuities exactly. Our Mumford–Shah framework overcomes the limitations of existing techniques that blur the discontinuity function, be less able to preserve geometric features, be sensitive to surface sampling, and require a postprocessing to form feature curves from located discontinuity vertices. Intensive experimental results on a variety of surfaces show the superiority of our denoising methods qualitatively and quantitatively. [Display omitted] •Two coupled function spaces and associated operators are given out over meshes, which can describe the edge function space and its operators for directly diffusing the function over edges.•Two Mumford–Shah-based models are formulated in the proposed function spaces, which are more able to produce high quality denoised results with neat features and at the same time locate discontinuities accurately.•Two efficient algorithms based on alternating minimization are presented to solve the proposed Mumford–Shah regularizations.</description><subject>[formula omitted]-convergence approximation</subject><subject>Apexes</subject><subject>Differential equations</subject><subject>Discontinuity</subject><subject>Feature preserving</subject><subject>Finite element method</subject><subject>Function space</subject><subject>Mesh denoising</subject><subject>Mumford–Shah functional</subject><subject>Noise reduction</subject><subject>Operators (mathematics)</subject><issn>0010-4485</issn><issn>1879-2685</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEFOwzAQRS0EEqVwAHaRWKeMnTh2xAoBBaQWFsDacu0xdWjjYrdF7LgDN-QkpAprVqOR_vszeoScUhhRoNV5MzLajhiw3c4kl3tkQKWoc1ZJvk8GABTyspT8kByl1AAAo0U9IMUU0zy7xjb45NvXbOt1prOHsMVFNt0sXYj25-v7aa7n2TjqJX6E-HZMDpxeJDz5m0PyMr55vrrLJ4-391eXk9wUjK9zWspq5uxMI8UaNNN25qBGahgFBBSaCmekMJYJKZ3hwmpWWGkYUO60MMWQnPW9qxjeN5jWqgmb2HYnFStLVjHgvOxStE-ZGFKK6NQq-qWOn4qC2rlRjercqJ0b1bvpmIuewe79rceokvHYGrQ-olkrG_w_9C8BjmvU</recordid><startdate>202009</startdate><enddate>202009</enddate><creator>Liu, Zheng</creator><creator>Wang, Weina</creator><creator>Zhong, Saishang</creator><creator>Zeng, Bohong</creator><creator>Liu, Jinqin</creator><creator>Wang, Weiming</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202009</creationdate><title>Mesh Denoising via a Novel Mumford–Shah Framework</title><author>Liu, Zheng ; Wang, Weina ; Zhong, Saishang ; Zeng, Bohong ; Liu, Jinqin ; Wang, Weiming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-1486bfdbae1e90a2adbf09e1c210e0e7a17fc87cd2788fc57da23d8c2015fa7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>[formula omitted]-convergence approximation</topic><topic>Apexes</topic><topic>Differential equations</topic><topic>Discontinuity</topic><topic>Feature preserving</topic><topic>Finite element method</topic><topic>Function space</topic><topic>Mesh denoising</topic><topic>Mumford–Shah functional</topic><topic>Noise reduction</topic><topic>Operators (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Zheng</creatorcontrib><creatorcontrib>Wang, Weina</creatorcontrib><creatorcontrib>Zhong, Saishang</creatorcontrib><creatorcontrib>Zeng, Bohong</creatorcontrib><creatorcontrib>Liu, Jinqin</creatorcontrib><creatorcontrib>Wang, Weiming</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer aided design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Zheng</au><au>Wang, Weina</au><au>Zhong, Saishang</au><au>Zeng, Bohong</au><au>Liu, Jinqin</au><au>Wang, Weiming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mesh Denoising via a Novel Mumford–Shah Framework</atitle><jtitle>Computer aided design</jtitle><date>2020-09</date><risdate>2020</risdate><volume>126</volume><spage>102858</spage><pages>102858-</pages><artnum>102858</artnum><issn>0010-4485</issn><eissn>1879-2685</eissn><abstract>In this paper, we introduce a Mumford–Shah framework to restore the face normal field on the triangulated surface. To effectively discretize Γ-convergence approximation of the Mumford–Shah model, we first define an edge function space and its associated differential operators. They are helpful for directly diffusing the discontinuity function over mesh edges instead of computing the approximated discontinuity function via pointwise diffusion in existing discretizations. Then, by using the operators in the proposed function space, two Mumford–Shah-based denoising methods are presented, which can produce denoised results with neat geometric features and locate geometric discontinuities exactly. Our Mumford–Shah framework overcomes the limitations of existing techniques that blur the discontinuity function, be less able to preserve geometric features, be sensitive to surface sampling, and require a postprocessing to form feature curves from located discontinuity vertices. Intensive experimental results on a variety of surfaces show the superiority of our denoising methods qualitatively and quantitatively. [Display omitted] •Two coupled function spaces and associated operators are given out over meshes, which can describe the edge function space and its operators for directly diffusing the function over edges.•Two Mumford–Shah-based models are formulated in the proposed function spaces, which are more able to produce high quality denoised results with neat features and at the same time locate discontinuities accurately.•Two efficient algorithms based on alternating minimization are presented to solve the proposed Mumford–Shah regularizations.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cad.2020.102858</doi></addata></record>
fulltext fulltext
identifier ISSN: 0010-4485
ispartof Computer aided design, 2020-09, Vol.126, p.102858, Article 102858
issn 0010-4485
1879-2685
language eng
recordid cdi_proquest_journals_2442620554
source Elsevier ScienceDirect Journals Complete
subjects [formula omitted]-convergence approximation
Apexes
Differential equations
Discontinuity
Feature preserving
Finite element method
Function space
Mesh denoising
Mumford–Shah functional
Noise reduction
Operators (mathematics)
title Mesh Denoising via a Novel Mumford–Shah Framework
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T15%3A16%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mesh%20Denoising%20via%20a%20Novel%20Mumford%E2%80%93Shah%20Framework&rft.jtitle=Computer%20aided%20design&rft.au=Liu,%20Zheng&rft.date=2020-09&rft.volume=126&rft.spage=102858&rft.pages=102858-&rft.artnum=102858&rft.issn=0010-4485&rft.eissn=1879-2685&rft_id=info:doi/10.1016/j.cad.2020.102858&rft_dat=%3Cproquest_cross%3E2442620554%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2442620554&rft_id=info:pmid/&rft_els_id=S0010448520300518&rfr_iscdi=true