A novel approach for optimal trajectory design with multiple operation modes of propulsion system, part 1

Efficient performance of a number of engineering systems is achieved through different modes of operation - yielding systems described as “hybrid”, containing both real-valued and discrete decision variables. Prominent examples of such systems, in space applications, could be spacecraft equipped wit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta astronautica 2020-07, Vol.172, p.151-165
Hauptverfasser: Taheri, Ehsan, Junkins, John L., Kolmanovsky, Ilya, Girard, Anouck
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 165
container_issue
container_start_page 151
container_title Acta astronautica
container_volume 172
creator Taheri, Ehsan
Junkins, John L.
Kolmanovsky, Ilya
Girard, Anouck
description Efficient performance of a number of engineering systems is achieved through different modes of operation - yielding systems described as “hybrid”, containing both real-valued and discrete decision variables. Prominent examples of such systems, in space applications, could be spacecraft equipped with 1) a variable-Isp, variable-thrust engine or 2) multiple engines each capable of switching on/off independently. To alleviate the challenges that arise when an indirect optimization method is used, a new framework — Composite Smooth Control (CSC) — is proposed that seeks smoothness over the entire spectrum of distinct control inputs. A salient aftermath of the application of the CSC framework is that the original multi-point boundary-value problem can be treated as a two-point boundary-value problem with smooth, differentiable control inputs; the latter is notably easier to solve, yet can be made to accurately approximate the former hybrid problem. The utility of the CSC framework is demonstrated through a multi-year, multi-revolution heliocentric fuel-optimal trajectory for a spacecraft equipped with a variable-Isp, variable-thrust engine. •Optimization of low-thrust interplanetary trajectories with variable specific impulse, variable thrust engines.•A new framework, called Composite Smooth Control (CSC), is developed to handle various types of state-triggered constraints.•Indirect optimization method is used to formulate fuel-optimal problems.•Complex-based derivative approach is used to construct co-state dynamics numerically.•Multi-revolution, multi-year trajectory optimization is analyzed.
doi_str_mv 10.1016/j.actaastro.2020.02.042
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2442619344</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0094576520301156</els_id><sourcerecordid>2442619344</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-2b3e9880dc470ec0de47edb6202e00751270637ac2da9ece5e96b3bdbaf75c983</originalsourceid><addsrcrecordid>eNqFkEtPwzAQhC0EEqXwG7DElYSN83B8rCpeUiUucLYcZ0MdJXGw3aL-e1wVceW00mpmducj5DaDNIOseuhTpYNSPjibMmCQAkuhYGdkkdVcJAxyOCcLAFEkJa_KS3LlfQ8AnNViQcyKTnaPA1Xz7KzSW9pZR-0czKgGGpzqUQfrDrRFbz4n-m3Clo67IZh5wKhDp4KxEx1tFFDb0Zgy7wZ_3PmDDzje01m5QLNrctGpwePN71ySj6fH9_VLsnl7fl2vNonOBQsJa3IUdQ2tLjighhYLjm1TxWoYny4zxqHKudKsVQI1liiqJm_aRnW81KLOl-TulBs_-dqhD7K3OzfFk5IVBasykRdFVPGTSjvrvcNOzi5WdgeZgTxylb384yqPXCUwGblG5-rkxFhib9BJrw1OGlvjIivZWvNvxg-iqIed</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2442619344</pqid></control><display><type>article</type><title>A novel approach for optimal trajectory design with multiple operation modes of propulsion system, part 1</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Taheri, Ehsan ; Junkins, John L. ; Kolmanovsky, Ilya ; Girard, Anouck</creator><creatorcontrib>Taheri, Ehsan ; Junkins, John L. ; Kolmanovsky, Ilya ; Girard, Anouck</creatorcontrib><description>Efficient performance of a number of engineering systems is achieved through different modes of operation - yielding systems described as “hybrid”, containing both real-valued and discrete decision variables. Prominent examples of such systems, in space applications, could be spacecraft equipped with 1) a variable-Isp, variable-thrust engine or 2) multiple engines each capable of switching on/off independently. To alleviate the challenges that arise when an indirect optimization method is used, a new framework — Composite Smooth Control (CSC) — is proposed that seeks smoothness over the entire spectrum of distinct control inputs. A salient aftermath of the application of the CSC framework is that the original multi-point boundary-value problem can be treated as a two-point boundary-value problem with smooth, differentiable control inputs; the latter is notably easier to solve, yet can be made to accurately approximate the former hybrid problem. The utility of the CSC framework is demonstrated through a multi-year, multi-revolution heliocentric fuel-optimal trajectory for a spacecraft equipped with a variable-Isp, variable-thrust engine. •Optimization of low-thrust interplanetary trajectories with variable specific impulse, variable thrust engines.•A new framework, called Composite Smooth Control (CSC), is developed to handle various types of state-triggered constraints.•Indirect optimization method is used to formulate fuel-optimal problems.•Complex-based derivative approach is used to construct co-state dynamics numerically.•Multi-revolution, multi-year trajectory optimization is analyzed.</description><identifier>ISSN: 0094-5765</identifier><identifier>EISSN: 1879-2030</identifier><identifier>DOI: 10.1016/j.actaastro.2020.02.042</identifier><language>eng</language><publisher>Elmsford: Elsevier Ltd</publisher><subject>Aerospace engines ; Boundary value problems ; Composite smooth control ; Fuel-optimal ; Hybrid systems ; Indirect method ; Low-thrust trajectory optimization ; Mathematical analysis ; Numerical continuation method ; Primer vector ; Propulsion system performance ; Smoothness ; Space applications ; Spacecraft ; Thrust ; Trajectory optimization ; Variable specific impulse</subject><ispartof>Acta astronautica, 2020-07, Vol.172, p.151-165</ispartof><rights>2020 IAA</rights><rights>Copyright Elsevier BV Jul 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-2b3e9880dc470ec0de47edb6202e00751270637ac2da9ece5e96b3bdbaf75c983</citedby><cites>FETCH-LOGICAL-c392t-2b3e9880dc470ec0de47edb6202e00751270637ac2da9ece5e96b3bdbaf75c983</cites><orcidid>0000-0003-3410-7271 ; 0000-0002-7225-4160 ; 0000-0002-6021-7012</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actaastro.2020.02.042$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Taheri, Ehsan</creatorcontrib><creatorcontrib>Junkins, John L.</creatorcontrib><creatorcontrib>Kolmanovsky, Ilya</creatorcontrib><creatorcontrib>Girard, Anouck</creatorcontrib><title>A novel approach for optimal trajectory design with multiple operation modes of propulsion system, part 1</title><title>Acta astronautica</title><description>Efficient performance of a number of engineering systems is achieved through different modes of operation - yielding systems described as “hybrid”, containing both real-valued and discrete decision variables. Prominent examples of such systems, in space applications, could be spacecraft equipped with 1) a variable-Isp, variable-thrust engine or 2) multiple engines each capable of switching on/off independently. To alleviate the challenges that arise when an indirect optimization method is used, a new framework — Composite Smooth Control (CSC) — is proposed that seeks smoothness over the entire spectrum of distinct control inputs. A salient aftermath of the application of the CSC framework is that the original multi-point boundary-value problem can be treated as a two-point boundary-value problem with smooth, differentiable control inputs; the latter is notably easier to solve, yet can be made to accurately approximate the former hybrid problem. The utility of the CSC framework is demonstrated through a multi-year, multi-revolution heliocentric fuel-optimal trajectory for a spacecraft equipped with a variable-Isp, variable-thrust engine. •Optimization of low-thrust interplanetary trajectories with variable specific impulse, variable thrust engines.•A new framework, called Composite Smooth Control (CSC), is developed to handle various types of state-triggered constraints.•Indirect optimization method is used to formulate fuel-optimal problems.•Complex-based derivative approach is used to construct co-state dynamics numerically.•Multi-revolution, multi-year trajectory optimization is analyzed.</description><subject>Aerospace engines</subject><subject>Boundary value problems</subject><subject>Composite smooth control</subject><subject>Fuel-optimal</subject><subject>Hybrid systems</subject><subject>Indirect method</subject><subject>Low-thrust trajectory optimization</subject><subject>Mathematical analysis</subject><subject>Numerical continuation method</subject><subject>Primer vector</subject><subject>Propulsion system performance</subject><subject>Smoothness</subject><subject>Space applications</subject><subject>Spacecraft</subject><subject>Thrust</subject><subject>Trajectory optimization</subject><subject>Variable specific impulse</subject><issn>0094-5765</issn><issn>1879-2030</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPwzAQhC0EEqXwG7DElYSN83B8rCpeUiUucLYcZ0MdJXGw3aL-e1wVceW00mpmducj5DaDNIOseuhTpYNSPjibMmCQAkuhYGdkkdVcJAxyOCcLAFEkJa_KS3LlfQ8AnNViQcyKTnaPA1Xz7KzSW9pZR-0czKgGGpzqUQfrDrRFbz4n-m3Clo67IZh5wKhDp4KxEx1tFFDb0Zgy7wZ_3PmDDzje01m5QLNrctGpwePN71ySj6fH9_VLsnl7fl2vNonOBQsJa3IUdQ2tLjighhYLjm1TxWoYny4zxqHKudKsVQI1liiqJm_aRnW81KLOl-TulBs_-dqhD7K3OzfFk5IVBasykRdFVPGTSjvrvcNOzi5WdgeZgTxylb384yqPXCUwGblG5-rkxFhib9BJrw1OGlvjIivZWvNvxg-iqIed</recordid><startdate>202007</startdate><enddate>202007</enddate><creator>Taheri, Ehsan</creator><creator>Junkins, John L.</creator><creator>Kolmanovsky, Ilya</creator><creator>Girard, Anouck</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7TG</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3410-7271</orcidid><orcidid>https://orcid.org/0000-0002-7225-4160</orcidid><orcidid>https://orcid.org/0000-0002-6021-7012</orcidid></search><sort><creationdate>202007</creationdate><title>A novel approach for optimal trajectory design with multiple operation modes of propulsion system, part 1</title><author>Taheri, Ehsan ; Junkins, John L. ; Kolmanovsky, Ilya ; Girard, Anouck</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-2b3e9880dc470ec0de47edb6202e00751270637ac2da9ece5e96b3bdbaf75c983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aerospace engines</topic><topic>Boundary value problems</topic><topic>Composite smooth control</topic><topic>Fuel-optimal</topic><topic>Hybrid systems</topic><topic>Indirect method</topic><topic>Low-thrust trajectory optimization</topic><topic>Mathematical analysis</topic><topic>Numerical continuation method</topic><topic>Primer vector</topic><topic>Propulsion system performance</topic><topic>Smoothness</topic><topic>Space applications</topic><topic>Spacecraft</topic><topic>Thrust</topic><topic>Trajectory optimization</topic><topic>Variable specific impulse</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taheri, Ehsan</creatorcontrib><creatorcontrib>Junkins, John L.</creatorcontrib><creatorcontrib>Kolmanovsky, Ilya</creatorcontrib><creatorcontrib>Girard, Anouck</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Acta astronautica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taheri, Ehsan</au><au>Junkins, John L.</au><au>Kolmanovsky, Ilya</au><au>Girard, Anouck</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel approach for optimal trajectory design with multiple operation modes of propulsion system, part 1</atitle><jtitle>Acta astronautica</jtitle><date>2020-07</date><risdate>2020</risdate><volume>172</volume><spage>151</spage><epage>165</epage><pages>151-165</pages><issn>0094-5765</issn><eissn>1879-2030</eissn><abstract>Efficient performance of a number of engineering systems is achieved through different modes of operation - yielding systems described as “hybrid”, containing both real-valued and discrete decision variables. Prominent examples of such systems, in space applications, could be spacecraft equipped with 1) a variable-Isp, variable-thrust engine or 2) multiple engines each capable of switching on/off independently. To alleviate the challenges that arise when an indirect optimization method is used, a new framework — Composite Smooth Control (CSC) — is proposed that seeks smoothness over the entire spectrum of distinct control inputs. A salient aftermath of the application of the CSC framework is that the original multi-point boundary-value problem can be treated as a two-point boundary-value problem with smooth, differentiable control inputs; the latter is notably easier to solve, yet can be made to accurately approximate the former hybrid problem. The utility of the CSC framework is demonstrated through a multi-year, multi-revolution heliocentric fuel-optimal trajectory for a spacecraft equipped with a variable-Isp, variable-thrust engine. •Optimization of low-thrust interplanetary trajectories with variable specific impulse, variable thrust engines.•A new framework, called Composite Smooth Control (CSC), is developed to handle various types of state-triggered constraints.•Indirect optimization method is used to formulate fuel-optimal problems.•Complex-based derivative approach is used to construct co-state dynamics numerically.•Multi-revolution, multi-year trajectory optimization is analyzed.</abstract><cop>Elmsford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actaastro.2020.02.042</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-3410-7271</orcidid><orcidid>https://orcid.org/0000-0002-7225-4160</orcidid><orcidid>https://orcid.org/0000-0002-6021-7012</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-5765
ispartof Acta astronautica, 2020-07, Vol.172, p.151-165
issn 0094-5765
1879-2030
language eng
recordid cdi_proquest_journals_2442619344
source Elsevier ScienceDirect Journals Complete
subjects Aerospace engines
Boundary value problems
Composite smooth control
Fuel-optimal
Hybrid systems
Indirect method
Low-thrust trajectory optimization
Mathematical analysis
Numerical continuation method
Primer vector
Propulsion system performance
Smoothness
Space applications
Spacecraft
Thrust
Trajectory optimization
Variable specific impulse
title A novel approach for optimal trajectory design with multiple operation modes of propulsion system, part 1
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A39%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20approach%20for%20optimal%20trajectory%20design%20with%20multiple%20operation%20modes%20of%20propulsion%20system,%20part%201&rft.jtitle=Acta%20astronautica&rft.au=Taheri,%20Ehsan&rft.date=2020-07&rft.volume=172&rft.spage=151&rft.epage=165&rft.pages=151-165&rft.issn=0094-5765&rft.eissn=1879-2030&rft_id=info:doi/10.1016/j.actaastro.2020.02.042&rft_dat=%3Cproquest_cross%3E2442619344%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2442619344&rft_id=info:pmid/&rft_els_id=S0094576520301156&rfr_iscdi=true