Salt and sugar derived high power carbon microspheres anode with excellent low-potential capacity

Herein, a salt-assisted hydrothermal carbonization (HTC) strategy is applied to fabricate low-surface-area carbon microspheres (as low as 5.5 m2 g−1) for sodium ion batteries (SIBs) by using water containing eutectic salt melt (e.g. NaCl) and sugar (e.g. glucose) as reaction media. The small amount...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbon (New York) 2020-08, Vol.163, p.288-296
Hauptverfasser: Yang, Le, Hu, Mingxiang, Lv, Qian, Zhang, Hongwei, Yang, Wen, Lv, Ruitao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 296
container_issue
container_start_page 288
container_title Carbon (New York)
container_volume 163
creator Yang, Le
Hu, Mingxiang
Lv, Qian
Zhang, Hongwei
Yang, Wen
Lv, Ruitao
description Herein, a salt-assisted hydrothermal carbonization (HTC) strategy is applied to fabricate low-surface-area carbon microspheres (as low as 5.5 m2 g−1) for sodium ion batteries (SIBs) by using water containing eutectic salt melt (e.g. NaCl) and sugar (e.g. glucose) as reaction media. The small amount of salt increases the carbon conversion efficiency from 15.0 to 58.3%, and microsphere size from the nanoscale to the microscale. Meanwhile, the specific surface area of carbon microsphere is minimized and the microstructure is optimized. Ex-situ X-ray diffraction (XRD) and kinetic analysis revealed that the narrower lateral width of pseudographitic domains and lower micropore volume are the key factors to promote sodium storage ability and Na ion diffusion. The carbon microsphere anode delivers a capacity of 350 mAh g−1 with 73.0% from the low potential (0–0.2 V) at 100 mA g−1, a high initial Coulombic efficiency (ICE) of 86.1% (excluding conductive carbon black), and an excellent rate capability with capacity of 261 mAh g−1 even at 500 mA g−1. This research highlights a salt-assisted HTC method to synthesize low-surface-area carbon microspheres with superior ICE and energy/power density. [Display omitted]
doi_str_mv 10.1016/j.carbon.2020.03.021
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2442616912</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622320302645</els_id><sourcerecordid>2442616912</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-377f48f4f5f601df8a3ae59b31e246f910852a4d5297393eceea2981d0cfb9243</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKv_wEXA9Yx5zWsjSPEFBRfqOqTJTSdlOhmTaWv_vSnj2tW9F853LucgdEtJTgkt7ze5VmHl-5wRRnLCc8LoGZrRuuIZrxt6jmaEkDorGeOX6CrGTTpFTcUMqQ_VjVj1BsfdWgVsILg9GNy6dYsHf4CAJ2-8dTr4OLQQICbAG8AHN7YYfjR0HfQj7vwhG_yYVqe6hA1Ku_F4jS6s6iLc_M05-np--ly8Zsv3l7fF4zLTnIsx41VlRW2FLWxJqLG14gqKZsUpMFHahpK6YEqYgjUVbzhoAMWamhqi7aphgs_R3eQ7BP-9gzjKjd-FPr2UTAhW0rKhLKnEpDqFiQGsHILbqnCUlMhTmXIjp8DyVKYkXKYyE_YwYZAS7B0EGbWDXoNxAfQojXf_G_wC9jqAHg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2442616912</pqid></control><display><type>article</type><title>Salt and sugar derived high power carbon microspheres anode with excellent low-potential capacity</title><source>Elsevier ScienceDirect Journals</source><creator>Yang, Le ; Hu, Mingxiang ; Lv, Qian ; Zhang, Hongwei ; Yang, Wen ; Lv, Ruitao</creator><creatorcontrib>Yang, Le ; Hu, Mingxiang ; Lv, Qian ; Zhang, Hongwei ; Yang, Wen ; Lv, Ruitao</creatorcontrib><description>Herein, a salt-assisted hydrothermal carbonization (HTC) strategy is applied to fabricate low-surface-area carbon microspheres (as low as 5.5 m2 g−1) for sodium ion batteries (SIBs) by using water containing eutectic salt melt (e.g. NaCl) and sugar (e.g. glucose) as reaction media. The small amount of salt increases the carbon conversion efficiency from 15.0 to 58.3%, and microsphere size from the nanoscale to the microscale. Meanwhile, the specific surface area of carbon microsphere is minimized and the microstructure is optimized. Ex-situ X-ray diffraction (XRD) and kinetic analysis revealed that the narrower lateral width of pseudographitic domains and lower micropore volume are the key factors to promote sodium storage ability and Na ion diffusion. The carbon microsphere anode delivers a capacity of 350 mAh g−1 with 73.0% from the low potential (0–0.2 V) at 100 mA g−1, a high initial Coulombic efficiency (ICE) of 86.1% (excluding conductive carbon black), and an excellent rate capability with capacity of 261 mAh g−1 even at 500 mA g−1. This research highlights a salt-assisted HTC method to synthesize low-surface-area carbon microspheres with superior ICE and energy/power density. [Display omitted]</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2020.03.021</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Accelerated carbonization ; Anode ; Anodes ; Batteries ; Carbon ; Carbon black ; Carbon fibers ; Hard carbon ; Ion diffusion ; Lithium ; Microspheres ; Salt-assisted hydrothermal carbonization ; Sodium ; Sodium diffusion ; Sodium ion battery ; Studies</subject><ispartof>Carbon (New York), 2020-08, Vol.163, p.288-296</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Aug 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-377f48f4f5f601df8a3ae59b31e246f910852a4d5297393eceea2981d0cfb9243</citedby><cites>FETCH-LOGICAL-c334t-377f48f4f5f601df8a3ae59b31e246f910852a4d5297393eceea2981d0cfb9243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.carbon.2020.03.021$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids></links><search><creatorcontrib>Yang, Le</creatorcontrib><creatorcontrib>Hu, Mingxiang</creatorcontrib><creatorcontrib>Lv, Qian</creatorcontrib><creatorcontrib>Zhang, Hongwei</creatorcontrib><creatorcontrib>Yang, Wen</creatorcontrib><creatorcontrib>Lv, Ruitao</creatorcontrib><title>Salt and sugar derived high power carbon microspheres anode with excellent low-potential capacity</title><title>Carbon (New York)</title><description>Herein, a salt-assisted hydrothermal carbonization (HTC) strategy is applied to fabricate low-surface-area carbon microspheres (as low as 5.5 m2 g−1) for sodium ion batteries (SIBs) by using water containing eutectic salt melt (e.g. NaCl) and sugar (e.g. glucose) as reaction media. The small amount of salt increases the carbon conversion efficiency from 15.0 to 58.3%, and microsphere size from the nanoscale to the microscale. Meanwhile, the specific surface area of carbon microsphere is minimized and the microstructure is optimized. Ex-situ X-ray diffraction (XRD) and kinetic analysis revealed that the narrower lateral width of pseudographitic domains and lower micropore volume are the key factors to promote sodium storage ability and Na ion diffusion. The carbon microsphere anode delivers a capacity of 350 mAh g−1 with 73.0% from the low potential (0–0.2 V) at 100 mA g−1, a high initial Coulombic efficiency (ICE) of 86.1% (excluding conductive carbon black), and an excellent rate capability with capacity of 261 mAh g−1 even at 500 mA g−1. This research highlights a salt-assisted HTC method to synthesize low-surface-area carbon microspheres with superior ICE and energy/power density. [Display omitted]</description><subject>Accelerated carbonization</subject><subject>Anode</subject><subject>Anodes</subject><subject>Batteries</subject><subject>Carbon</subject><subject>Carbon black</subject><subject>Carbon fibers</subject><subject>Hard carbon</subject><subject>Ion diffusion</subject><subject>Lithium</subject><subject>Microspheres</subject><subject>Salt-assisted hydrothermal carbonization</subject><subject>Sodium</subject><subject>Sodium diffusion</subject><subject>Sodium ion battery</subject><subject>Studies</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKv_wEXA9Yx5zWsjSPEFBRfqOqTJTSdlOhmTaWv_vSnj2tW9F853LucgdEtJTgkt7ze5VmHl-5wRRnLCc8LoGZrRuuIZrxt6jmaEkDorGeOX6CrGTTpFTcUMqQ_VjVj1BsfdWgVsILg9GNy6dYsHf4CAJ2-8dTr4OLQQICbAG8AHN7YYfjR0HfQj7vwhG_yYVqe6hA1Ku_F4jS6s6iLc_M05-np--ly8Zsv3l7fF4zLTnIsx41VlRW2FLWxJqLG14gqKZsUpMFHahpK6YEqYgjUVbzhoAMWamhqi7aphgs_R3eQ7BP-9gzjKjd-FPr2UTAhW0rKhLKnEpDqFiQGsHILbqnCUlMhTmXIjp8DyVKYkXKYyE_YwYZAS7B0EGbWDXoNxAfQojXf_G_wC9jqAHg</recordid><startdate>20200815</startdate><enddate>20200815</enddate><creator>Yang, Le</creator><creator>Hu, Mingxiang</creator><creator>Lv, Qian</creator><creator>Zhang, Hongwei</creator><creator>Yang, Wen</creator><creator>Lv, Ruitao</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20200815</creationdate><title>Salt and sugar derived high power carbon microspheres anode with excellent low-potential capacity</title><author>Yang, Le ; Hu, Mingxiang ; Lv, Qian ; Zhang, Hongwei ; Yang, Wen ; Lv, Ruitao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-377f48f4f5f601df8a3ae59b31e246f910852a4d5297393eceea2981d0cfb9243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accelerated carbonization</topic><topic>Anode</topic><topic>Anodes</topic><topic>Batteries</topic><topic>Carbon</topic><topic>Carbon black</topic><topic>Carbon fibers</topic><topic>Hard carbon</topic><topic>Ion diffusion</topic><topic>Lithium</topic><topic>Microspheres</topic><topic>Salt-assisted hydrothermal carbonization</topic><topic>Sodium</topic><topic>Sodium diffusion</topic><topic>Sodium ion battery</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Le</creatorcontrib><creatorcontrib>Hu, Mingxiang</creatorcontrib><creatorcontrib>Lv, Qian</creatorcontrib><creatorcontrib>Zhang, Hongwei</creatorcontrib><creatorcontrib>Yang, Wen</creatorcontrib><creatorcontrib>Lv, Ruitao</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Le</au><au>Hu, Mingxiang</au><au>Lv, Qian</au><au>Zhang, Hongwei</au><au>Yang, Wen</au><au>Lv, Ruitao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Salt and sugar derived high power carbon microspheres anode with excellent low-potential capacity</atitle><jtitle>Carbon (New York)</jtitle><date>2020-08-15</date><risdate>2020</risdate><volume>163</volume><spage>288</spage><epage>296</epage><pages>288-296</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><abstract>Herein, a salt-assisted hydrothermal carbonization (HTC) strategy is applied to fabricate low-surface-area carbon microspheres (as low as 5.5 m2 g−1) for sodium ion batteries (SIBs) by using water containing eutectic salt melt (e.g. NaCl) and sugar (e.g. glucose) as reaction media. The small amount of salt increases the carbon conversion efficiency from 15.0 to 58.3%, and microsphere size from the nanoscale to the microscale. Meanwhile, the specific surface area of carbon microsphere is minimized and the microstructure is optimized. Ex-situ X-ray diffraction (XRD) and kinetic analysis revealed that the narrower lateral width of pseudographitic domains and lower micropore volume are the key factors to promote sodium storage ability and Na ion diffusion. The carbon microsphere anode delivers a capacity of 350 mAh g−1 with 73.0% from the low potential (0–0.2 V) at 100 mA g−1, a high initial Coulombic efficiency (ICE) of 86.1% (excluding conductive carbon black), and an excellent rate capability with capacity of 261 mAh g−1 even at 500 mA g−1. This research highlights a salt-assisted HTC method to synthesize low-surface-area carbon microspheres with superior ICE and energy/power density. [Display omitted]</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2020.03.021</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0008-6223
ispartof Carbon (New York), 2020-08, Vol.163, p.288-296
issn 0008-6223
1873-3891
language eng
recordid cdi_proquest_journals_2442616912
source Elsevier ScienceDirect Journals
subjects Accelerated carbonization
Anode
Anodes
Batteries
Carbon
Carbon black
Carbon fibers
Hard carbon
Ion diffusion
Lithium
Microspheres
Salt-assisted hydrothermal carbonization
Sodium
Sodium diffusion
Sodium ion battery
Studies
title Salt and sugar derived high power carbon microspheres anode with excellent low-potential capacity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T04%3A09%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Salt%20and%20sugar%20derived%20high%20power%20carbon%20microspheres%20anode%20with%20excellent%20low-potential%20capacity&rft.jtitle=Carbon%20(New%20York)&rft.au=Yang,%20Le&rft.date=2020-08-15&rft.volume=163&rft.spage=288&rft.epage=296&rft.pages=288-296&rft.issn=0008-6223&rft.eissn=1873-3891&rft_id=info:doi/10.1016/j.carbon.2020.03.021&rft_dat=%3Cproquest_cross%3E2442616912%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2442616912&rft_id=info:pmid/&rft_els_id=S0008622320302645&rfr_iscdi=true