Salt and sugar derived high power carbon microspheres anode with excellent low-potential capacity
Herein, a salt-assisted hydrothermal carbonization (HTC) strategy is applied to fabricate low-surface-area carbon microspheres (as low as 5.5 m2 g−1) for sodium ion batteries (SIBs) by using water containing eutectic salt melt (e.g. NaCl) and sugar (e.g. glucose) as reaction media. The small amount...
Gespeichert in:
Veröffentlicht in: | Carbon (New York) 2020-08, Vol.163, p.288-296 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 296 |
---|---|
container_issue | |
container_start_page | 288 |
container_title | Carbon (New York) |
container_volume | 163 |
creator | Yang, Le Hu, Mingxiang Lv, Qian Zhang, Hongwei Yang, Wen Lv, Ruitao |
description | Herein, a salt-assisted hydrothermal carbonization (HTC) strategy is applied to fabricate low-surface-area carbon microspheres (as low as 5.5 m2 g−1) for sodium ion batteries (SIBs) by using water containing eutectic salt melt (e.g. NaCl) and sugar (e.g. glucose) as reaction media. The small amount of salt increases the carbon conversion efficiency from 15.0 to 58.3%, and microsphere size from the nanoscale to the microscale. Meanwhile, the specific surface area of carbon microsphere is minimized and the microstructure is optimized. Ex-situ X-ray diffraction (XRD) and kinetic analysis revealed that the narrower lateral width of pseudographitic domains and lower micropore volume are the key factors to promote sodium storage ability and Na ion diffusion. The carbon microsphere anode delivers a capacity of 350 mAh g−1 with 73.0% from the low potential (0–0.2 V) at 100 mA g−1, a high initial Coulombic efficiency (ICE) of 86.1% (excluding conductive carbon black), and an excellent rate capability with capacity of 261 mAh g−1 even at 500 mA g−1. This research highlights a salt-assisted HTC method to synthesize low-surface-area carbon microspheres with superior ICE and energy/power density.
[Display omitted] |
doi_str_mv | 10.1016/j.carbon.2020.03.021 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2442616912</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622320302645</els_id><sourcerecordid>2442616912</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-377f48f4f5f601df8a3ae59b31e246f910852a4d5297393eceea2981d0cfb9243</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKv_wEXA9Yx5zWsjSPEFBRfqOqTJTSdlOhmTaWv_vSnj2tW9F853LucgdEtJTgkt7ze5VmHl-5wRRnLCc8LoGZrRuuIZrxt6jmaEkDorGeOX6CrGTTpFTcUMqQ_VjVj1BsfdWgVsILg9GNy6dYsHf4CAJ2-8dTr4OLQQICbAG8AHN7YYfjR0HfQj7vwhG_yYVqe6hA1Ku_F4jS6s6iLc_M05-np--ly8Zsv3l7fF4zLTnIsx41VlRW2FLWxJqLG14gqKZsUpMFHahpK6YEqYgjUVbzhoAMWamhqi7aphgs_R3eQ7BP-9gzjKjd-FPr2UTAhW0rKhLKnEpDqFiQGsHILbqnCUlMhTmXIjp8DyVKYkXKYyE_YwYZAS7B0EGbWDXoNxAfQojXf_G_wC9jqAHg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2442616912</pqid></control><display><type>article</type><title>Salt and sugar derived high power carbon microspheres anode with excellent low-potential capacity</title><source>Elsevier ScienceDirect Journals</source><creator>Yang, Le ; Hu, Mingxiang ; Lv, Qian ; Zhang, Hongwei ; Yang, Wen ; Lv, Ruitao</creator><creatorcontrib>Yang, Le ; Hu, Mingxiang ; Lv, Qian ; Zhang, Hongwei ; Yang, Wen ; Lv, Ruitao</creatorcontrib><description>Herein, a salt-assisted hydrothermal carbonization (HTC) strategy is applied to fabricate low-surface-area carbon microspheres (as low as 5.5 m2 g−1) for sodium ion batteries (SIBs) by using water containing eutectic salt melt (e.g. NaCl) and sugar (e.g. glucose) as reaction media. The small amount of salt increases the carbon conversion efficiency from 15.0 to 58.3%, and microsphere size from the nanoscale to the microscale. Meanwhile, the specific surface area of carbon microsphere is minimized and the microstructure is optimized. Ex-situ X-ray diffraction (XRD) and kinetic analysis revealed that the narrower lateral width of pseudographitic domains and lower micropore volume are the key factors to promote sodium storage ability and Na ion diffusion. The carbon microsphere anode delivers a capacity of 350 mAh g−1 with 73.0% from the low potential (0–0.2 V) at 100 mA g−1, a high initial Coulombic efficiency (ICE) of 86.1% (excluding conductive carbon black), and an excellent rate capability with capacity of 261 mAh g−1 even at 500 mA g−1. This research highlights a salt-assisted HTC method to synthesize low-surface-area carbon microspheres with superior ICE and energy/power density.
[Display omitted]</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2020.03.021</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Accelerated carbonization ; Anode ; Anodes ; Batteries ; Carbon ; Carbon black ; Carbon fibers ; Hard carbon ; Ion diffusion ; Lithium ; Microspheres ; Salt-assisted hydrothermal carbonization ; Sodium ; Sodium diffusion ; Sodium ion battery ; Studies</subject><ispartof>Carbon (New York), 2020-08, Vol.163, p.288-296</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Aug 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-377f48f4f5f601df8a3ae59b31e246f910852a4d5297393eceea2981d0cfb9243</citedby><cites>FETCH-LOGICAL-c334t-377f48f4f5f601df8a3ae59b31e246f910852a4d5297393eceea2981d0cfb9243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.carbon.2020.03.021$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids></links><search><creatorcontrib>Yang, Le</creatorcontrib><creatorcontrib>Hu, Mingxiang</creatorcontrib><creatorcontrib>Lv, Qian</creatorcontrib><creatorcontrib>Zhang, Hongwei</creatorcontrib><creatorcontrib>Yang, Wen</creatorcontrib><creatorcontrib>Lv, Ruitao</creatorcontrib><title>Salt and sugar derived high power carbon microspheres anode with excellent low-potential capacity</title><title>Carbon (New York)</title><description>Herein, a salt-assisted hydrothermal carbonization (HTC) strategy is applied to fabricate low-surface-area carbon microspheres (as low as 5.5 m2 g−1) for sodium ion batteries (SIBs) by using water containing eutectic salt melt (e.g. NaCl) and sugar (e.g. glucose) as reaction media. The small amount of salt increases the carbon conversion efficiency from 15.0 to 58.3%, and microsphere size from the nanoscale to the microscale. Meanwhile, the specific surface area of carbon microsphere is minimized and the microstructure is optimized. Ex-situ X-ray diffraction (XRD) and kinetic analysis revealed that the narrower lateral width of pseudographitic domains and lower micropore volume are the key factors to promote sodium storage ability and Na ion diffusion. The carbon microsphere anode delivers a capacity of 350 mAh g−1 with 73.0% from the low potential (0–0.2 V) at 100 mA g−1, a high initial Coulombic efficiency (ICE) of 86.1% (excluding conductive carbon black), and an excellent rate capability with capacity of 261 mAh g−1 even at 500 mA g−1. This research highlights a salt-assisted HTC method to synthesize low-surface-area carbon microspheres with superior ICE and energy/power density.
[Display omitted]</description><subject>Accelerated carbonization</subject><subject>Anode</subject><subject>Anodes</subject><subject>Batteries</subject><subject>Carbon</subject><subject>Carbon black</subject><subject>Carbon fibers</subject><subject>Hard carbon</subject><subject>Ion diffusion</subject><subject>Lithium</subject><subject>Microspheres</subject><subject>Salt-assisted hydrothermal carbonization</subject><subject>Sodium</subject><subject>Sodium diffusion</subject><subject>Sodium ion battery</subject><subject>Studies</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKv_wEXA9Yx5zWsjSPEFBRfqOqTJTSdlOhmTaWv_vSnj2tW9F853LucgdEtJTgkt7ze5VmHl-5wRRnLCc8LoGZrRuuIZrxt6jmaEkDorGeOX6CrGTTpFTcUMqQ_VjVj1BsfdWgVsILg9GNy6dYsHf4CAJ2-8dTr4OLQQICbAG8AHN7YYfjR0HfQj7vwhG_yYVqe6hA1Ku_F4jS6s6iLc_M05-np--ly8Zsv3l7fF4zLTnIsx41VlRW2FLWxJqLG14gqKZsUpMFHahpK6YEqYgjUVbzhoAMWamhqi7aphgs_R3eQ7BP-9gzjKjd-FPr2UTAhW0rKhLKnEpDqFiQGsHILbqnCUlMhTmXIjp8DyVKYkXKYyE_YwYZAS7B0EGbWDXoNxAfQojXf_G_wC9jqAHg</recordid><startdate>20200815</startdate><enddate>20200815</enddate><creator>Yang, Le</creator><creator>Hu, Mingxiang</creator><creator>Lv, Qian</creator><creator>Zhang, Hongwei</creator><creator>Yang, Wen</creator><creator>Lv, Ruitao</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20200815</creationdate><title>Salt and sugar derived high power carbon microspheres anode with excellent low-potential capacity</title><author>Yang, Le ; Hu, Mingxiang ; Lv, Qian ; Zhang, Hongwei ; Yang, Wen ; Lv, Ruitao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-377f48f4f5f601df8a3ae59b31e246f910852a4d5297393eceea2981d0cfb9243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accelerated carbonization</topic><topic>Anode</topic><topic>Anodes</topic><topic>Batteries</topic><topic>Carbon</topic><topic>Carbon black</topic><topic>Carbon fibers</topic><topic>Hard carbon</topic><topic>Ion diffusion</topic><topic>Lithium</topic><topic>Microspheres</topic><topic>Salt-assisted hydrothermal carbonization</topic><topic>Sodium</topic><topic>Sodium diffusion</topic><topic>Sodium ion battery</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Le</creatorcontrib><creatorcontrib>Hu, Mingxiang</creatorcontrib><creatorcontrib>Lv, Qian</creatorcontrib><creatorcontrib>Zhang, Hongwei</creatorcontrib><creatorcontrib>Yang, Wen</creatorcontrib><creatorcontrib>Lv, Ruitao</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Le</au><au>Hu, Mingxiang</au><au>Lv, Qian</au><au>Zhang, Hongwei</au><au>Yang, Wen</au><au>Lv, Ruitao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Salt and sugar derived high power carbon microspheres anode with excellent low-potential capacity</atitle><jtitle>Carbon (New York)</jtitle><date>2020-08-15</date><risdate>2020</risdate><volume>163</volume><spage>288</spage><epage>296</epage><pages>288-296</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><abstract>Herein, a salt-assisted hydrothermal carbonization (HTC) strategy is applied to fabricate low-surface-area carbon microspheres (as low as 5.5 m2 g−1) for sodium ion batteries (SIBs) by using water containing eutectic salt melt (e.g. NaCl) and sugar (e.g. glucose) as reaction media. The small amount of salt increases the carbon conversion efficiency from 15.0 to 58.3%, and microsphere size from the nanoscale to the microscale. Meanwhile, the specific surface area of carbon microsphere is minimized and the microstructure is optimized. Ex-situ X-ray diffraction (XRD) and kinetic analysis revealed that the narrower lateral width of pseudographitic domains and lower micropore volume are the key factors to promote sodium storage ability and Na ion diffusion. The carbon microsphere anode delivers a capacity of 350 mAh g−1 with 73.0% from the low potential (0–0.2 V) at 100 mA g−1, a high initial Coulombic efficiency (ICE) of 86.1% (excluding conductive carbon black), and an excellent rate capability with capacity of 261 mAh g−1 even at 500 mA g−1. This research highlights a salt-assisted HTC method to synthesize low-surface-area carbon microspheres with superior ICE and energy/power density.
[Display omitted]</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2020.03.021</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-6223 |
ispartof | Carbon (New York), 2020-08, Vol.163, p.288-296 |
issn | 0008-6223 1873-3891 |
language | eng |
recordid | cdi_proquest_journals_2442616912 |
source | Elsevier ScienceDirect Journals |
subjects | Accelerated carbonization Anode Anodes Batteries Carbon Carbon black Carbon fibers Hard carbon Ion diffusion Lithium Microspheres Salt-assisted hydrothermal carbonization Sodium Sodium diffusion Sodium ion battery Studies |
title | Salt and sugar derived high power carbon microspheres anode with excellent low-potential capacity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T04%3A09%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Salt%20and%20sugar%20derived%20high%20power%20carbon%20microspheres%20anode%20with%20excellent%20low-potential%20capacity&rft.jtitle=Carbon%20(New%20York)&rft.au=Yang,%20Le&rft.date=2020-08-15&rft.volume=163&rft.spage=288&rft.epage=296&rft.pages=288-296&rft.issn=0008-6223&rft.eissn=1873-3891&rft_id=info:doi/10.1016/j.carbon.2020.03.021&rft_dat=%3Cproquest_cross%3E2442616912%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2442616912&rft_id=info:pmid/&rft_els_id=S0008622320302645&rfr_iscdi=true |