Optimization of CH3NH3PbI3 perovskite solar cells: A theoretical and experimental study
•Development of CH3NH3PbI3 perovskite solar cell.•Thickness optimization of spiro-OMeTAD and perovskite layers.•Study of the effect of defect density on solar cell performance.•Emphasis on the role of work function in back contact. In this work, an experimental and theoretical study on CH3NH3PbI3 pe...
Gespeichert in:
Veröffentlicht in: | Solar energy 2020-03, Vol.199, p.198-205 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 205 |
---|---|
container_issue | |
container_start_page | 198 |
container_title | Solar energy |
container_volume | 199 |
creator | Montoya De Los Santos, I. Cortina-Marrero, Hugo J. Ruíz-Sánchez, M.A. Hechavarría-Difur, L. Sánchez-Rodríguez, F.J. Courel, Maykel Hu, Hailin |
description | •Development of CH3NH3PbI3 perovskite solar cell.•Thickness optimization of spiro-OMeTAD and perovskite layers.•Study of the effect of defect density on solar cell performance.•Emphasis on the role of work function in back contact.
In this work, an experimental and theoretical study on CH3NH3PbI3 perovskite solar cells was performed. A theoretical validation of experimental results in perovskite solar cells with efficiencies of 13.32% is presented. An optimization study which involves the spiro-OMeTAD and perovskite thickness’ influence on electrical output parameters (Voc, Jsc, FF and PCE) showed a promotion of solar cell efficiency to 15.50% under 100 nm and 400 nm for hole transport material and absorber, respectively. The importance of the diffusion length of the absorber is discussed. In order to enhance the efficiency, a study of defect density (NT) was applied at the range of 1016 cm−3 (experimental) to 1010 cm−3 (theoretical) where we achieved an efficiency of 20.26%. The present work illustrates the importance of thickness optimization and the reduction of defect density (by the improvement of the quality of processed film) to obtain a better performance of this type of solar cell. Furthermore, the relevance of the implementation of a back contact with higher work function was studied. |
doi_str_mv | 10.1016/j.solener.2020.02.026 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2442616427</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0038092X20301328</els_id><sourcerecordid>2442616427</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-b27793a0f206ea8196068f91dbf19f579081081083137768ed865f2c37261b5c3</originalsourceid><addsrcrecordid>eNqFUF1LwzAUDaLgnP4EIeBzZz7apPVFxlA3GM4HRd9Cm95iatfUJBvOX2_mfBcOXLj3nHvuPQhdUjKhhIrrduJtBz24CSOMTAiLEEdoRFNJE8oyeYxGhPA8IQV7O0Vn3reEUElzOUKvqyGYtfkug7E9tg2ezfnjnD9VC44HcHbrP0wAHA1KhzV0nb_BUxzewToIRpcdLvsaw1fkmjX0ITZ82NS7c3TSlJ2Hi786Ri_3d8-zebJcPSxm02WiOZchqZiUBS9Jw4iAMqeFICJvClpXDS2aTBYkp7_glEspcqhzkTVMc8kErTLNx-jqsHdw9nMDPqjWblwfLRVL00gSKZORlR1Y2lnvHTRqiOeWbqcoUfsMVav-MlT7DBVhESLqbg86iC9sTZx6baDXUBsHOqjamn82_ADrcHua</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2442616427</pqid></control><display><type>article</type><title>Optimization of CH3NH3PbI3 perovskite solar cells: A theoretical and experimental study</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Montoya De Los Santos, I. ; Cortina-Marrero, Hugo J. ; Ruíz-Sánchez, M.A. ; Hechavarría-Difur, L. ; Sánchez-Rodríguez, F.J. ; Courel, Maykel ; Hu, Hailin</creator><creatorcontrib>Montoya De Los Santos, I. ; Cortina-Marrero, Hugo J. ; Ruíz-Sánchez, M.A. ; Hechavarría-Difur, L. ; Sánchez-Rodríguez, F.J. ; Courel, Maykel ; Hu, Hailin</creatorcontrib><description>•Development of CH3NH3PbI3 perovskite solar cell.•Thickness optimization of spiro-OMeTAD and perovskite layers.•Study of the effect of defect density on solar cell performance.•Emphasis on the role of work function in back contact.
In this work, an experimental and theoretical study on CH3NH3PbI3 perovskite solar cells was performed. A theoretical validation of experimental results in perovskite solar cells with efficiencies of 13.32% is presented. An optimization study which involves the spiro-OMeTAD and perovskite thickness’ influence on electrical output parameters (Voc, Jsc, FF and PCE) showed a promotion of solar cell efficiency to 15.50% under 100 nm and 400 nm for hole transport material and absorber, respectively. The importance of the diffusion length of the absorber is discussed. In order to enhance the efficiency, a study of defect density (NT) was applied at the range of 1016 cm−3 (experimental) to 1010 cm−3 (theoretical) where we achieved an efficiency of 20.26%. The present work illustrates the importance of thickness optimization and the reduction of defect density (by the improvement of the quality of processed film) to obtain a better performance of this type of solar cell. Furthermore, the relevance of the implementation of a back contact with higher work function was studied.</description><identifier>ISSN: 0038-092X</identifier><identifier>EISSN: 1471-1257</identifier><identifier>DOI: 10.1016/j.solener.2020.02.026</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Absorbers ; Density ; Diffusion length ; Efficiency ; Electric contacts ; Modeling solar cell ; Optimization ; Optimization solar cell ; Perovskite solar cell ; Perovskites ; Photovoltaic cells ; SCAPS ; Solar cells ; Solar energy ; Thickness ; Work functions</subject><ispartof>Solar energy, 2020-03, Vol.199, p.198-205</ispartof><rights>2020 International Solar Energy Society</rights><rights>Copyright Pergamon Press Inc. Mar 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-b27793a0f206ea8196068f91dbf19f579081081083137768ed865f2c37261b5c3</citedby><cites>FETCH-LOGICAL-c337t-b27793a0f206ea8196068f91dbf19f579081081083137768ed865f2c37261b5c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.solener.2020.02.026$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Montoya De Los Santos, I.</creatorcontrib><creatorcontrib>Cortina-Marrero, Hugo J.</creatorcontrib><creatorcontrib>Ruíz-Sánchez, M.A.</creatorcontrib><creatorcontrib>Hechavarría-Difur, L.</creatorcontrib><creatorcontrib>Sánchez-Rodríguez, F.J.</creatorcontrib><creatorcontrib>Courel, Maykel</creatorcontrib><creatorcontrib>Hu, Hailin</creatorcontrib><title>Optimization of CH3NH3PbI3 perovskite solar cells: A theoretical and experimental study</title><title>Solar energy</title><description>•Development of CH3NH3PbI3 perovskite solar cell.•Thickness optimization of spiro-OMeTAD and perovskite layers.•Study of the effect of defect density on solar cell performance.•Emphasis on the role of work function in back contact.
In this work, an experimental and theoretical study on CH3NH3PbI3 perovskite solar cells was performed. A theoretical validation of experimental results in perovskite solar cells with efficiencies of 13.32% is presented. An optimization study which involves the spiro-OMeTAD and perovskite thickness’ influence on electrical output parameters (Voc, Jsc, FF and PCE) showed a promotion of solar cell efficiency to 15.50% under 100 nm and 400 nm for hole transport material and absorber, respectively. The importance of the diffusion length of the absorber is discussed. In order to enhance the efficiency, a study of defect density (NT) was applied at the range of 1016 cm−3 (experimental) to 1010 cm−3 (theoretical) where we achieved an efficiency of 20.26%. The present work illustrates the importance of thickness optimization and the reduction of defect density (by the improvement of the quality of processed film) to obtain a better performance of this type of solar cell. Furthermore, the relevance of the implementation of a back contact with higher work function was studied.</description><subject>Absorbers</subject><subject>Density</subject><subject>Diffusion length</subject><subject>Efficiency</subject><subject>Electric contacts</subject><subject>Modeling solar cell</subject><subject>Optimization</subject><subject>Optimization solar cell</subject><subject>Perovskite solar cell</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>SCAPS</subject><subject>Solar cells</subject><subject>Solar energy</subject><subject>Thickness</subject><subject>Work functions</subject><issn>0038-092X</issn><issn>1471-1257</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFUF1LwzAUDaLgnP4EIeBzZz7apPVFxlA3GM4HRd9Cm95iatfUJBvOX2_mfBcOXLj3nHvuPQhdUjKhhIrrduJtBz24CSOMTAiLEEdoRFNJE8oyeYxGhPA8IQV7O0Vn3reEUElzOUKvqyGYtfkug7E9tg2ezfnjnD9VC44HcHbrP0wAHA1KhzV0nb_BUxzewToIRpcdLvsaw1fkmjX0ITZ82NS7c3TSlJ2Hi786Ri_3d8-zebJcPSxm02WiOZchqZiUBS9Jw4iAMqeFICJvClpXDS2aTBYkp7_glEspcqhzkTVMc8kErTLNx-jqsHdw9nMDPqjWblwfLRVL00gSKZORlR1Y2lnvHTRqiOeWbqcoUfsMVav-MlT7DBVhESLqbg86iC9sTZx6baDXUBsHOqjamn82_ADrcHua</recordid><startdate>20200315</startdate><enddate>20200315</enddate><creator>Montoya De Los Santos, I.</creator><creator>Cortina-Marrero, Hugo J.</creator><creator>Ruíz-Sánchez, M.A.</creator><creator>Hechavarría-Difur, L.</creator><creator>Sánchez-Rodríguez, F.J.</creator><creator>Courel, Maykel</creator><creator>Hu, Hailin</creator><general>Elsevier Ltd</general><general>Pergamon Press Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20200315</creationdate><title>Optimization of CH3NH3PbI3 perovskite solar cells: A theoretical and experimental study</title><author>Montoya De Los Santos, I. ; Cortina-Marrero, Hugo J. ; Ruíz-Sánchez, M.A. ; Hechavarría-Difur, L. ; Sánchez-Rodríguez, F.J. ; Courel, Maykel ; Hu, Hailin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-b27793a0f206ea8196068f91dbf19f579081081083137768ed865f2c37261b5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Absorbers</topic><topic>Density</topic><topic>Diffusion length</topic><topic>Efficiency</topic><topic>Electric contacts</topic><topic>Modeling solar cell</topic><topic>Optimization</topic><topic>Optimization solar cell</topic><topic>Perovskite solar cell</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>SCAPS</topic><topic>Solar cells</topic><topic>Solar energy</topic><topic>Thickness</topic><topic>Work functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Montoya De Los Santos, I.</creatorcontrib><creatorcontrib>Cortina-Marrero, Hugo J.</creatorcontrib><creatorcontrib>Ruíz-Sánchez, M.A.</creatorcontrib><creatorcontrib>Hechavarría-Difur, L.</creatorcontrib><creatorcontrib>Sánchez-Rodríguez, F.J.</creatorcontrib><creatorcontrib>Courel, Maykel</creatorcontrib><creatorcontrib>Hu, Hailin</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Solar energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Montoya De Los Santos, I.</au><au>Cortina-Marrero, Hugo J.</au><au>Ruíz-Sánchez, M.A.</au><au>Hechavarría-Difur, L.</au><au>Sánchez-Rodríguez, F.J.</au><au>Courel, Maykel</au><au>Hu, Hailin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of CH3NH3PbI3 perovskite solar cells: A theoretical and experimental study</atitle><jtitle>Solar energy</jtitle><date>2020-03-15</date><risdate>2020</risdate><volume>199</volume><spage>198</spage><epage>205</epage><pages>198-205</pages><issn>0038-092X</issn><eissn>1471-1257</eissn><abstract>•Development of CH3NH3PbI3 perovskite solar cell.•Thickness optimization of spiro-OMeTAD and perovskite layers.•Study of the effect of defect density on solar cell performance.•Emphasis on the role of work function in back contact.
In this work, an experimental and theoretical study on CH3NH3PbI3 perovskite solar cells was performed. A theoretical validation of experimental results in perovskite solar cells with efficiencies of 13.32% is presented. An optimization study which involves the spiro-OMeTAD and perovskite thickness’ influence on electrical output parameters (Voc, Jsc, FF and PCE) showed a promotion of solar cell efficiency to 15.50% under 100 nm and 400 nm for hole transport material and absorber, respectively. The importance of the diffusion length of the absorber is discussed. In order to enhance the efficiency, a study of defect density (NT) was applied at the range of 1016 cm−3 (experimental) to 1010 cm−3 (theoretical) where we achieved an efficiency of 20.26%. The present work illustrates the importance of thickness optimization and the reduction of defect density (by the improvement of the quality of processed film) to obtain a better performance of this type of solar cell. Furthermore, the relevance of the implementation of a back contact with higher work function was studied.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.solener.2020.02.026</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0038-092X |
ispartof | Solar energy, 2020-03, Vol.199, p.198-205 |
issn | 0038-092X 1471-1257 |
language | eng |
recordid | cdi_proquest_journals_2442616427 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Absorbers Density Diffusion length Efficiency Electric contacts Modeling solar cell Optimization Optimization solar cell Perovskite solar cell Perovskites Photovoltaic cells SCAPS Solar cells Solar energy Thickness Work functions |
title | Optimization of CH3NH3PbI3 perovskite solar cells: A theoretical and experimental study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T17%3A31%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20CH3NH3PbI3%20perovskite%20solar%20cells:%20A%20theoretical%20and%20experimental%20study&rft.jtitle=Solar%20energy&rft.au=Montoya%20De%20Los%20Santos,%20I.&rft.date=2020-03-15&rft.volume=199&rft.spage=198&rft.epage=205&rft.pages=198-205&rft.issn=0038-092X&rft.eissn=1471-1257&rft_id=info:doi/10.1016/j.solener.2020.02.026&rft_dat=%3Cproquest_cross%3E2442616427%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2442616427&rft_id=info:pmid/&rft_els_id=S0038092X20301328&rfr_iscdi=true |