A new class of weighted bimodal distribution with application to gamma-ray burst duration data
Gamma-ray bursts (GRBs) have been confidently identified thus far and are prescribed to different physical scenarios, black hole mergers, and collapse of massive stars. The distribution of GRBs duration, which is one of the main characteristics of GRBs, is bimodal. Hence, many authors have used mixt...
Gespeichert in:
Veröffentlicht in: | Journal of applied statistics 2020-11, Vol.47 (13-15), p.2785-2807 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2807 |
---|---|
container_issue | 13-15 |
container_start_page | 2785 |
container_title | Journal of applied statistics |
container_volume | 47 |
creator | Sharifipanah, Najme Chinipardaz, Rahim Parham, Gholam Ali |
description | Gamma-ray bursts (GRBs) have been confidently identified thus far and are prescribed to different physical scenarios, black hole mergers, and collapse of massive stars. The distribution of GRBs duration, which is one of the main characteristics of GRBs, is bimodal. Hence, many authors have used mixtures of distribution models to fit them, which suffers serious estimation problems either from classical or Bayesian approaches. Therefore, in this article we introduced a more flexible class of weighted bimodal distribution, called alpha two-piece skew normal (ATPSN), for modeling GRBs duration data set. Some of the main probabilistic and inferential properties of the distribution are discussed and a simulation study is carried out to illustrate the performance of the MLEs. |
doi_str_mv | 10.1080/02664763.2020.1815669 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2442574599</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2442574599</sourcerecordid><originalsourceid>FETCH-LOGICAL-c496t-ab88f20df2c042dd6f9699496a6c4dbeadd163e67c28e579fb41985fa14892bb3</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxS1ERbeFjwCyxIVLimM7dnxBVBUtSJV6gSvWxH92XSXxYjtd7bcn6W4r4MBppHm_eTOjh9DbmlzUpCUfCRWCS8EuKKFzq60bIdQLtKqZIBVpGH2JVgtTLdApOsv5nhAyY-wVOmWNJJIztkI_L_Hodtj0kDOOHu9cWG-Ks7gLQ7TQYxtySaGbSogj3oWywbDd9sHAY6NEvIZhgCrBHndTygXbKR00CwVeoxMPfXZvjvUc_bj-8v3qa3V7d_Pt6vK2MlyJUkHXtp4S66khnForvBJKzRIIw23nwNpaMCekoa1rpPIdr1XbeKh5q2jXsXP06eC7nbrBWePGkqDX2xQGSHsdIei_lTFs9Do-aEWUVFLOBh-OBin-mlwuegjZuL6H0cUpayqkbKSQRM3o-3_Q-zilcX5PU85pI3mjFqo5UCbFnJPzz8fURC8J6qcE9ZKgPiY4z73785PnqafIZuDzAQijj2mAXUy91QX2fUw-wWhC1uz_O34DJUysVA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2442574599</pqid></control><display><type>article</type><title>A new class of weighted bimodal distribution with application to gamma-ray burst duration data</title><source>EBSCOhost Business Source Complete</source><source>PubMed Central</source><creator>Sharifipanah, Najme ; Chinipardaz, Rahim ; Parham, Gholam Ali</creator><creatorcontrib>Sharifipanah, Najme ; Chinipardaz, Rahim ; Parham, Gholam Ali</creatorcontrib><description>Gamma-ray bursts (GRBs) have been confidently identified thus far and are prescribed to different physical scenarios, black hole mergers, and collapse of massive stars. The distribution of GRBs duration, which is one of the main characteristics of GRBs, is bimodal. Hence, many authors have used mixtures of distribution models to fit them, which suffers serious estimation problems either from classical or Bayesian approaches. Therefore, in this article we introduced a more flexible class of weighted bimodal distribution, called alpha two-piece skew normal (ATPSN), for modeling GRBs duration data set. Some of the main probabilistic and inferential properties of the distribution are discussed and a simulation study is carried out to illustrate the performance of the MLEs.</description><identifier>ISSN: 0266-4763</identifier><identifier>EISSN: 1360-0532</identifier><identifier>DOI: 10.1080/02664763.2020.1815669</identifier><identifier>PMID: 35707433</identifier><language>eng</language><publisher>England: Taylor & Francis</publisher><subject>Bayesian analysis ; Bimodality ; Computer simulation ; Gamma ray bursts ; Gamma rays ; gamma-ray burst duration ; Massive stars ; simulation ; Skewness ; Statistical methods ; V WCDANM 2018: Advances in Computational Data Analysis ; weighted distribution</subject><ispartof>Journal of applied statistics, 2020-11, Vol.47 (13-15), p.2785-2807</ispartof><rights>2020 Informa UK Limited, trading as Taylor & Francis Group 2020</rights><rights>2020 Informa UK Limited, trading as Taylor & Francis Group.</rights><rights>2020 Informa UK Limited, trading as Taylor & Francis Group</rights><rights>2020 Informa UK Limited, trading as Taylor & Francis Group 2020 Taylor & Francis</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c496t-ab88f20df2c042dd6f9699496a6c4dbeadd163e67c28e579fb41985fa14892bb3</citedby><cites>FETCH-LOGICAL-c496t-ab88f20df2c042dd6f9699496a6c4dbeadd163e67c28e579fb41985fa14892bb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9097977/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9097977/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35707433$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sharifipanah, Najme</creatorcontrib><creatorcontrib>Chinipardaz, Rahim</creatorcontrib><creatorcontrib>Parham, Gholam Ali</creatorcontrib><title>A new class of weighted bimodal distribution with application to gamma-ray burst duration data</title><title>Journal of applied statistics</title><addtitle>J Appl Stat</addtitle><description>Gamma-ray bursts (GRBs) have been confidently identified thus far and are prescribed to different physical scenarios, black hole mergers, and collapse of massive stars. The distribution of GRBs duration, which is one of the main characteristics of GRBs, is bimodal. Hence, many authors have used mixtures of distribution models to fit them, which suffers serious estimation problems either from classical or Bayesian approaches. Therefore, in this article we introduced a more flexible class of weighted bimodal distribution, called alpha two-piece skew normal (ATPSN), for modeling GRBs duration data set. Some of the main probabilistic and inferential properties of the distribution are discussed and a simulation study is carried out to illustrate the performance of the MLEs.</description><subject>Bayesian analysis</subject><subject>Bimodality</subject><subject>Computer simulation</subject><subject>Gamma ray bursts</subject><subject>Gamma rays</subject><subject>gamma-ray burst duration</subject><subject>Massive stars</subject><subject>simulation</subject><subject>Skewness</subject><subject>Statistical methods</subject><subject>V WCDANM 2018: Advances in Computational Data Analysis</subject><subject>weighted distribution</subject><issn>0266-4763</issn><issn>1360-0532</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kU9v1DAQxS1ERbeFjwCyxIVLimM7dnxBVBUtSJV6gSvWxH92XSXxYjtd7bcn6W4r4MBppHm_eTOjh9DbmlzUpCUfCRWCS8EuKKFzq60bIdQLtKqZIBVpGH2JVgtTLdApOsv5nhAyY-wVOmWNJJIztkI_L_Hodtj0kDOOHu9cWG-Ks7gLQ7TQYxtySaGbSogj3oWywbDd9sHAY6NEvIZhgCrBHndTygXbKR00CwVeoxMPfXZvjvUc_bj-8v3qa3V7d_Pt6vK2MlyJUkHXtp4S66khnForvBJKzRIIw23nwNpaMCekoa1rpPIdr1XbeKh5q2jXsXP06eC7nbrBWePGkqDX2xQGSHsdIei_lTFs9Do-aEWUVFLOBh-OBin-mlwuegjZuL6H0cUpayqkbKSQRM3o-3_Q-zilcX5PU85pI3mjFqo5UCbFnJPzz8fURC8J6qcE9ZKgPiY4z73785PnqafIZuDzAQijj2mAXUy91QX2fUw-wWhC1uz_O34DJUysVA</recordid><startdate>20201117</startdate><enddate>20201117</enddate><creator>Sharifipanah, Najme</creator><creator>Chinipardaz, Rahim</creator><creator>Parham, Gholam Ali</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20201117</creationdate><title>A new class of weighted bimodal distribution with application to gamma-ray burst duration data</title><author>Sharifipanah, Najme ; Chinipardaz, Rahim ; Parham, Gholam Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c496t-ab88f20df2c042dd6f9699496a6c4dbeadd163e67c28e579fb41985fa14892bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bayesian analysis</topic><topic>Bimodality</topic><topic>Computer simulation</topic><topic>Gamma ray bursts</topic><topic>Gamma rays</topic><topic>gamma-ray burst duration</topic><topic>Massive stars</topic><topic>simulation</topic><topic>Skewness</topic><topic>Statistical methods</topic><topic>V WCDANM 2018: Advances in Computational Data Analysis</topic><topic>weighted distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharifipanah, Najme</creatorcontrib><creatorcontrib>Chinipardaz, Rahim</creatorcontrib><creatorcontrib>Parham, Gholam Ali</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of applied statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharifipanah, Najme</au><au>Chinipardaz, Rahim</au><au>Parham, Gholam Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new class of weighted bimodal distribution with application to gamma-ray burst duration data</atitle><jtitle>Journal of applied statistics</jtitle><addtitle>J Appl Stat</addtitle><date>2020-11-17</date><risdate>2020</risdate><volume>47</volume><issue>13-15</issue><spage>2785</spage><epage>2807</epage><pages>2785-2807</pages><issn>0266-4763</issn><eissn>1360-0532</eissn><abstract>Gamma-ray bursts (GRBs) have been confidently identified thus far and are prescribed to different physical scenarios, black hole mergers, and collapse of massive stars. The distribution of GRBs duration, which is one of the main characteristics of GRBs, is bimodal. Hence, many authors have used mixtures of distribution models to fit them, which suffers serious estimation problems either from classical or Bayesian approaches. Therefore, in this article we introduced a more flexible class of weighted bimodal distribution, called alpha two-piece skew normal (ATPSN), for modeling GRBs duration data set. Some of the main probabilistic and inferential properties of the distribution are discussed and a simulation study is carried out to illustrate the performance of the MLEs.</abstract><cop>England</cop><pub>Taylor & Francis</pub><pmid>35707433</pmid><doi>10.1080/02664763.2020.1815669</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0266-4763 |
ispartof | Journal of applied statistics, 2020-11, Vol.47 (13-15), p.2785-2807 |
issn | 0266-4763 1360-0532 |
language | eng |
recordid | cdi_proquest_journals_2442574599 |
source | EBSCOhost Business Source Complete; PubMed Central |
subjects | Bayesian analysis Bimodality Computer simulation Gamma ray bursts Gamma rays gamma-ray burst duration Massive stars simulation Skewness Statistical methods V WCDANM 2018: Advances in Computational Data Analysis weighted distribution |
title | A new class of weighted bimodal distribution with application to gamma-ray burst duration data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T17%3A11%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20class%20of%20weighted%20bimodal%20distribution%20with%20application%20to%20gamma-ray%20burst%20duration%20data&rft.jtitle=Journal%20of%20applied%20statistics&rft.au=Sharifipanah,%20Najme&rft.date=2020-11-17&rft.volume=47&rft.issue=13-15&rft.spage=2785&rft.epage=2807&rft.pages=2785-2807&rft.issn=0266-4763&rft.eissn=1360-0532&rft_id=info:doi/10.1080/02664763.2020.1815669&rft_dat=%3Cproquest_pubme%3E2442574599%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2442574599&rft_id=info:pmid/35707433&rfr_iscdi=true |