A new class of weighted bimodal distribution with application to gamma-ray burst duration data

Gamma-ray bursts (GRBs) have been confidently identified thus far and are prescribed to different physical scenarios, black hole mergers, and collapse of massive stars. The distribution of GRBs duration, which is one of the main characteristics of GRBs, is bimodal. Hence, many authors have used mixt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics 2020-11, Vol.47 (13-15), p.2785-2807
Hauptverfasser: Sharifipanah, Najme, Chinipardaz, Rahim, Parham, Gholam Ali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2807
container_issue 13-15
container_start_page 2785
container_title Journal of applied statistics
container_volume 47
creator Sharifipanah, Najme
Chinipardaz, Rahim
Parham, Gholam Ali
description Gamma-ray bursts (GRBs) have been confidently identified thus far and are prescribed to different physical scenarios, black hole mergers, and collapse of massive stars. The distribution of GRBs duration, which is one of the main characteristics of GRBs, is bimodal. Hence, many authors have used mixtures of distribution models to fit them, which suffers serious estimation problems either from classical or Bayesian approaches. Therefore, in this article we introduced a more flexible class of weighted bimodal distribution, called alpha two-piece skew normal (ATPSN), for modeling GRBs duration data set. Some of the main probabilistic and inferential properties of the distribution are discussed and a simulation study is carried out to illustrate the performance of the MLEs.
doi_str_mv 10.1080/02664763.2020.1815669
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2442574599</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2442574599</sourcerecordid><originalsourceid>FETCH-LOGICAL-c496t-ab88f20df2c042dd6f9699496a6c4dbeadd163e67c28e579fb41985fa14892bb3</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxS1ERbeFjwCyxIVLimM7dnxBVBUtSJV6gSvWxH92XSXxYjtd7bcn6W4r4MBppHm_eTOjh9DbmlzUpCUfCRWCS8EuKKFzq60bIdQLtKqZIBVpGH2JVgtTLdApOsv5nhAyY-wVOmWNJJIztkI_L_Hodtj0kDOOHu9cWG-Ks7gLQ7TQYxtySaGbSogj3oWywbDd9sHAY6NEvIZhgCrBHndTygXbKR00CwVeoxMPfXZvjvUc_bj-8v3qa3V7d_Pt6vK2MlyJUkHXtp4S66khnForvBJKzRIIw23nwNpaMCekoa1rpPIdr1XbeKh5q2jXsXP06eC7nbrBWePGkqDX2xQGSHsdIei_lTFs9Do-aEWUVFLOBh-OBin-mlwuegjZuL6H0cUpayqkbKSQRM3o-3_Q-zilcX5PU85pI3mjFqo5UCbFnJPzz8fURC8J6qcE9ZKgPiY4z73785PnqafIZuDzAQijj2mAXUy91QX2fUw-wWhC1uz_O34DJUysVA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2442574599</pqid></control><display><type>article</type><title>A new class of weighted bimodal distribution with application to gamma-ray burst duration data</title><source>EBSCOhost Business Source Complete</source><source>PubMed Central</source><creator>Sharifipanah, Najme ; Chinipardaz, Rahim ; Parham, Gholam Ali</creator><creatorcontrib>Sharifipanah, Najme ; Chinipardaz, Rahim ; Parham, Gholam Ali</creatorcontrib><description>Gamma-ray bursts (GRBs) have been confidently identified thus far and are prescribed to different physical scenarios, black hole mergers, and collapse of massive stars. The distribution of GRBs duration, which is one of the main characteristics of GRBs, is bimodal. Hence, many authors have used mixtures of distribution models to fit them, which suffers serious estimation problems either from classical or Bayesian approaches. Therefore, in this article we introduced a more flexible class of weighted bimodal distribution, called alpha two-piece skew normal (ATPSN), for modeling GRBs duration data set. Some of the main probabilistic and inferential properties of the distribution are discussed and a simulation study is carried out to illustrate the performance of the MLEs.</description><identifier>ISSN: 0266-4763</identifier><identifier>EISSN: 1360-0532</identifier><identifier>DOI: 10.1080/02664763.2020.1815669</identifier><identifier>PMID: 35707433</identifier><language>eng</language><publisher>England: Taylor &amp; Francis</publisher><subject>Bayesian analysis ; Bimodality ; Computer simulation ; Gamma ray bursts ; Gamma rays ; gamma-ray burst duration ; Massive stars ; simulation ; Skewness ; Statistical methods ; V WCDANM 2018: Advances in Computational Data Analysis ; weighted distribution</subject><ispartof>Journal of applied statistics, 2020-11, Vol.47 (13-15), p.2785-2807</ispartof><rights>2020 Informa UK Limited, trading as Taylor &amp; Francis Group 2020</rights><rights>2020 Informa UK Limited, trading as Taylor &amp; Francis Group.</rights><rights>2020 Informa UK Limited, trading as Taylor &amp; Francis Group</rights><rights>2020 Informa UK Limited, trading as Taylor &amp; Francis Group 2020 Taylor &amp; Francis</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c496t-ab88f20df2c042dd6f9699496a6c4dbeadd163e67c28e579fb41985fa14892bb3</citedby><cites>FETCH-LOGICAL-c496t-ab88f20df2c042dd6f9699496a6c4dbeadd163e67c28e579fb41985fa14892bb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9097977/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9097977/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35707433$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sharifipanah, Najme</creatorcontrib><creatorcontrib>Chinipardaz, Rahim</creatorcontrib><creatorcontrib>Parham, Gholam Ali</creatorcontrib><title>A new class of weighted bimodal distribution with application to gamma-ray burst duration data</title><title>Journal of applied statistics</title><addtitle>J Appl Stat</addtitle><description>Gamma-ray bursts (GRBs) have been confidently identified thus far and are prescribed to different physical scenarios, black hole mergers, and collapse of massive stars. The distribution of GRBs duration, which is one of the main characteristics of GRBs, is bimodal. Hence, many authors have used mixtures of distribution models to fit them, which suffers serious estimation problems either from classical or Bayesian approaches. Therefore, in this article we introduced a more flexible class of weighted bimodal distribution, called alpha two-piece skew normal (ATPSN), for modeling GRBs duration data set. Some of the main probabilistic and inferential properties of the distribution are discussed and a simulation study is carried out to illustrate the performance of the MLEs.</description><subject>Bayesian analysis</subject><subject>Bimodality</subject><subject>Computer simulation</subject><subject>Gamma ray bursts</subject><subject>Gamma rays</subject><subject>gamma-ray burst duration</subject><subject>Massive stars</subject><subject>simulation</subject><subject>Skewness</subject><subject>Statistical methods</subject><subject>V WCDANM 2018: Advances in Computational Data Analysis</subject><subject>weighted distribution</subject><issn>0266-4763</issn><issn>1360-0532</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kU9v1DAQxS1ERbeFjwCyxIVLimM7dnxBVBUtSJV6gSvWxH92XSXxYjtd7bcn6W4r4MBppHm_eTOjh9DbmlzUpCUfCRWCS8EuKKFzq60bIdQLtKqZIBVpGH2JVgtTLdApOsv5nhAyY-wVOmWNJJIztkI_L_Hodtj0kDOOHu9cWG-Ks7gLQ7TQYxtySaGbSogj3oWywbDd9sHAY6NEvIZhgCrBHndTygXbKR00CwVeoxMPfXZvjvUc_bj-8v3qa3V7d_Pt6vK2MlyJUkHXtp4S66khnForvBJKzRIIw23nwNpaMCekoa1rpPIdr1XbeKh5q2jXsXP06eC7nbrBWePGkqDX2xQGSHsdIei_lTFs9Do-aEWUVFLOBh-OBin-mlwuegjZuL6H0cUpayqkbKSQRM3o-3_Q-zilcX5PU85pI3mjFqo5UCbFnJPzz8fURC8J6qcE9ZKgPiY4z73785PnqafIZuDzAQijj2mAXUy91QX2fUw-wWhC1uz_O34DJUysVA</recordid><startdate>20201117</startdate><enddate>20201117</enddate><creator>Sharifipanah, Najme</creator><creator>Chinipardaz, Rahim</creator><creator>Parham, Gholam Ali</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20201117</creationdate><title>A new class of weighted bimodal distribution with application to gamma-ray burst duration data</title><author>Sharifipanah, Najme ; Chinipardaz, Rahim ; Parham, Gholam Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c496t-ab88f20df2c042dd6f9699496a6c4dbeadd163e67c28e579fb41985fa14892bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bayesian analysis</topic><topic>Bimodality</topic><topic>Computer simulation</topic><topic>Gamma ray bursts</topic><topic>Gamma rays</topic><topic>gamma-ray burst duration</topic><topic>Massive stars</topic><topic>simulation</topic><topic>Skewness</topic><topic>Statistical methods</topic><topic>V WCDANM 2018: Advances in Computational Data Analysis</topic><topic>weighted distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharifipanah, Najme</creatorcontrib><creatorcontrib>Chinipardaz, Rahim</creatorcontrib><creatorcontrib>Parham, Gholam Ali</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of applied statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharifipanah, Najme</au><au>Chinipardaz, Rahim</au><au>Parham, Gholam Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new class of weighted bimodal distribution with application to gamma-ray burst duration data</atitle><jtitle>Journal of applied statistics</jtitle><addtitle>J Appl Stat</addtitle><date>2020-11-17</date><risdate>2020</risdate><volume>47</volume><issue>13-15</issue><spage>2785</spage><epage>2807</epage><pages>2785-2807</pages><issn>0266-4763</issn><eissn>1360-0532</eissn><abstract>Gamma-ray bursts (GRBs) have been confidently identified thus far and are prescribed to different physical scenarios, black hole mergers, and collapse of massive stars. The distribution of GRBs duration, which is one of the main characteristics of GRBs, is bimodal. Hence, many authors have used mixtures of distribution models to fit them, which suffers serious estimation problems either from classical or Bayesian approaches. Therefore, in this article we introduced a more flexible class of weighted bimodal distribution, called alpha two-piece skew normal (ATPSN), for modeling GRBs duration data set. Some of the main probabilistic and inferential properties of the distribution are discussed and a simulation study is carried out to illustrate the performance of the MLEs.</abstract><cop>England</cop><pub>Taylor &amp; Francis</pub><pmid>35707433</pmid><doi>10.1080/02664763.2020.1815669</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0266-4763
ispartof Journal of applied statistics, 2020-11, Vol.47 (13-15), p.2785-2807
issn 0266-4763
1360-0532
language eng
recordid cdi_proquest_journals_2442574599
source EBSCOhost Business Source Complete; PubMed Central
subjects Bayesian analysis
Bimodality
Computer simulation
Gamma ray bursts
Gamma rays
gamma-ray burst duration
Massive stars
simulation
Skewness
Statistical methods
V WCDANM 2018: Advances in Computational Data Analysis
weighted distribution
title A new class of weighted bimodal distribution with application to gamma-ray burst duration data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T17%3A11%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20class%20of%20weighted%20bimodal%20distribution%20with%20application%20to%20gamma-ray%20burst%20duration%20data&rft.jtitle=Journal%20of%20applied%20statistics&rft.au=Sharifipanah,%20Najme&rft.date=2020-11-17&rft.volume=47&rft.issue=13-15&rft.spage=2785&rft.epage=2807&rft.pages=2785-2807&rft.issn=0266-4763&rft.eissn=1360-0532&rft_id=info:doi/10.1080/02664763.2020.1815669&rft_dat=%3Cproquest_pubme%3E2442574599%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2442574599&rft_id=info:pmid/35707433&rfr_iscdi=true