A deep-learning-based surrogate model for data assimilation in dynamic subsurface flow problems

•Deep-learning-based surrogate model for dynamic subsurface flow is developed.•Method uses a residual U-net and convolutional LSTM recurrent network.•Surrogate capable of predicting states and well rates in channelized geomodels.•Data assimilation accomplished by combining surrogate with CNN-PCA par...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2020-07, Vol.413, p.109456, Article 109456
Hauptverfasser: Tang, Meng, Liu, Yimin, Durlofsky, Louis J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!