Non-collocated boundary control for contact-force control of a one-link flexible arm
This paper deals with contact-force control of a one-link flexible arm whose tip is constrained to a rigid environment. To realize the contact-force control, a boundary controller is proposed based on a dynamic model represented by an infinite dimensional model. In particular, the proposed controlle...
Gespeichert in:
Veröffentlicht in: | Journal of the Franklin Institute 2020-05, Vol.357 (7), p.4109-4131 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4131 |
---|---|
container_issue | 7 |
container_start_page | 4109 |
container_title | Journal of the Franklin Institute |
container_volume | 357 |
creator | Yamaguchi, Kaiyo Endo, Takahiro Kawai, Yuta Matsuno, Fumitoshi |
description | This paper deals with contact-force control of a one-link flexible arm whose tip is constrained to a rigid environment. To realize the contact-force control, a boundary controller is proposed based on a dynamic model represented by an infinite dimensional model. In particular, the proposed controller does not need the physical parameters in its implementation, and this results in the non-collocated boundary controller. The closed-loop system is analyzed in an appropriate Hilbert space, and it is shown that the exponential stability of the closed-loop system is obtained by setting the feedback gains to locate the eigenvalues of the closed-loop system on the complex left half-plane. In addition, in an attempt to realize the better control performance, another controller which is a modified version of our controller is proposed. Finally, the stability, robustness to the uncertainty in physical parameters, and disturbance response of the closed-loop system are investigated by numerical simulations. |
doi_str_mv | 10.1016/j.jfranklin.2020.01.018 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_proquest_journals_2442332532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016003220300338</els_id><sourcerecordid>2442332532</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-6e6d4123f575049dc818fb4635a92cea417a860e0ad2dc86bed29c3322b04ef83</originalsourceid><addsrcrecordid>eNqNUNtKAzEQDaJgrX6DCz7K1kmy18eyeIOiL_U5ZLMTyHab1Gzq5e9NbemrwsCcMOfMyRxCrinMKNDirp_12ku7GoydMWAwAxqrOiETWpV1yoqan5IJRGoKwNk5uRjHPj5LCjAhyxdnU-WGwSkZsEtat7Wd9N-JcjZ4NyTa-V8sVUgjVnicOJ3IxFlMo_Mq0QN-mXbARPr1JTnTchjx6tCn5O3hftk8pYvXx-dmvkhVxouQFlh0GWVc52UOWd2pila6zQqey5oplBktZVUAguxYHBYtdqxWnDPWQoa64lNys9-78e59i2MQvdt6Gy0FyzIWmTlnkVXuWcq7cfSoxcabdbxRUBC7CEUvjhGKXYQCaKzd_tu98hNbp0dl0Co8qgEg53kNPI-I7nyq_7MbE2QwzjYx7xCl870UY1ofBr04yDvjUQXROfPnZ38APKmfPQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2442332532</pqid></control><display><type>article</type><title>Non-collocated boundary control for contact-force control of a one-link flexible arm</title><source>ScienceDirect Journals (5 years ago - present)</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Yamaguchi, Kaiyo ; Endo, Takahiro ; Kawai, Yuta ; Matsuno, Fumitoshi</creator><creatorcontrib>Yamaguchi, Kaiyo ; Endo, Takahiro ; Kawai, Yuta ; Matsuno, Fumitoshi</creatorcontrib><description>This paper deals with contact-force control of a one-link flexible arm whose tip is constrained to a rigid environment. To realize the contact-force control, a boundary controller is proposed based on a dynamic model represented by an infinite dimensional model. In particular, the proposed controller does not need the physical parameters in its implementation, and this results in the non-collocated boundary controller. The closed-loop system is analyzed in an appropriate Hilbert space, and it is shown that the exponential stability of the closed-loop system is obtained by setting the feedback gains to locate the eigenvalues of the closed-loop system on the complex left half-plane. In addition, in an attempt to realize the better control performance, another controller which is a modified version of our controller is proposed. Finally, the stability, robustness to the uncertainty in physical parameters, and disturbance response of the closed-loop system are investigated by numerical simulations.</description><identifier>ISSN: 0016-0032</identifier><identifier>EISSN: 1879-2693</identifier><identifier>EISSN: 0016-0032</identifier><identifier>DOI: 10.1016/j.jfranklin.2020.01.018</identifier><language>eng</language><publisher>OXFORD: Elsevier Ltd</publisher><subject>Automation & Control Systems ; Boundary control ; Closed loop systems ; Computer simulation ; Contact force ; Control stability ; Controllers ; Dynamic models ; Eigenvalues ; Engineering ; Engineering, Electrical & Electronic ; Engineering, Multidisciplinary ; Feedback control ; Feedback control systems ; Hilbert space ; Mathematics ; Mathematics, Interdisciplinary Applications ; Numerical analysis ; Parameter uncertainty ; Physical properties ; Physical Sciences ; Robustness (mathematics) ; Science & Technology ; Technology</subject><ispartof>Journal of the Franklin Institute, 2020-05, Vol.357 (7), p.4109-4131</ispartof><rights>2020 The Franklin Institute</rights><rights>Copyright Elsevier Science Ltd. May 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>7</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000535903500012</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c436t-6e6d4123f575049dc818fb4635a92cea417a860e0ad2dc86bed29c3322b04ef83</citedby><cites>FETCH-LOGICAL-c436t-6e6d4123f575049dc818fb4635a92cea417a860e0ad2dc86bed29c3322b04ef83</cites><orcidid>0000-0002-2231-5359 ; 0000-0001-9685-3267</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jfranklin.2020.01.018$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,28253,46000</link.rule.ids></links><search><creatorcontrib>Yamaguchi, Kaiyo</creatorcontrib><creatorcontrib>Endo, Takahiro</creatorcontrib><creatorcontrib>Kawai, Yuta</creatorcontrib><creatorcontrib>Matsuno, Fumitoshi</creatorcontrib><title>Non-collocated boundary control for contact-force control of a one-link flexible arm</title><title>Journal of the Franklin Institute</title><addtitle>J FRANKLIN I</addtitle><description>This paper deals with contact-force control of a one-link flexible arm whose tip is constrained to a rigid environment. To realize the contact-force control, a boundary controller is proposed based on a dynamic model represented by an infinite dimensional model. In particular, the proposed controller does not need the physical parameters in its implementation, and this results in the non-collocated boundary controller. The closed-loop system is analyzed in an appropriate Hilbert space, and it is shown that the exponential stability of the closed-loop system is obtained by setting the feedback gains to locate the eigenvalues of the closed-loop system on the complex left half-plane. In addition, in an attempt to realize the better control performance, another controller which is a modified version of our controller is proposed. Finally, the stability, robustness to the uncertainty in physical parameters, and disturbance response of the closed-loop system are investigated by numerical simulations.</description><subject>Automation & Control Systems</subject><subject>Boundary control</subject><subject>Closed loop systems</subject><subject>Computer simulation</subject><subject>Contact force</subject><subject>Control stability</subject><subject>Controllers</subject><subject>Dynamic models</subject><subject>Eigenvalues</subject><subject>Engineering</subject><subject>Engineering, Electrical & Electronic</subject><subject>Engineering, Multidisciplinary</subject><subject>Feedback control</subject><subject>Feedback control systems</subject><subject>Hilbert space</subject><subject>Mathematics</subject><subject>Mathematics, Interdisciplinary Applications</subject><subject>Numerical analysis</subject><subject>Parameter uncertainty</subject><subject>Physical properties</subject><subject>Physical Sciences</subject><subject>Robustness (mathematics)</subject><subject>Science & Technology</subject><subject>Technology</subject><issn>0016-0032</issn><issn>1879-2693</issn><issn>0016-0032</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNUNtKAzEQDaJgrX6DCz7K1kmy18eyeIOiL_U5ZLMTyHab1Gzq5e9NbemrwsCcMOfMyRxCrinMKNDirp_12ku7GoydMWAwAxqrOiETWpV1yoqan5IJRGoKwNk5uRjHPj5LCjAhyxdnU-WGwSkZsEtat7Wd9N-JcjZ4NyTa-V8sVUgjVnicOJ3IxFlMo_Mq0QN-mXbARPr1JTnTchjx6tCn5O3hftk8pYvXx-dmvkhVxouQFlh0GWVc52UOWd2pila6zQqey5oplBktZVUAguxYHBYtdqxWnDPWQoa64lNys9-78e59i2MQvdt6Gy0FyzIWmTlnkVXuWcq7cfSoxcabdbxRUBC7CEUvjhGKXYQCaKzd_tu98hNbp0dl0Co8qgEg53kNPI-I7nyq_7MbE2QwzjYx7xCl870UY1ofBr04yDvjUQXROfPnZ38APKmfPQ</recordid><startdate>202005</startdate><enddate>202005</enddate><creator>Yamaguchi, Kaiyo</creator><creator>Endo, Takahiro</creator><creator>Kawai, Yuta</creator><creator>Matsuno, Fumitoshi</creator><general>Elsevier Ltd</general><general>Elsevier</general><general>Elsevier Science Ltd</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-2231-5359</orcidid><orcidid>https://orcid.org/0000-0001-9685-3267</orcidid></search><sort><creationdate>202005</creationdate><title>Non-collocated boundary control for contact-force control of a one-link flexible arm</title><author>Yamaguchi, Kaiyo ; Endo, Takahiro ; Kawai, Yuta ; Matsuno, Fumitoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-6e6d4123f575049dc818fb4635a92cea417a860e0ad2dc86bed29c3322b04ef83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Automation & Control Systems</topic><topic>Boundary control</topic><topic>Closed loop systems</topic><topic>Computer simulation</topic><topic>Contact force</topic><topic>Control stability</topic><topic>Controllers</topic><topic>Dynamic models</topic><topic>Eigenvalues</topic><topic>Engineering</topic><topic>Engineering, Electrical & Electronic</topic><topic>Engineering, Multidisciplinary</topic><topic>Feedback control</topic><topic>Feedback control systems</topic><topic>Hilbert space</topic><topic>Mathematics</topic><topic>Mathematics, Interdisciplinary Applications</topic><topic>Numerical analysis</topic><topic>Parameter uncertainty</topic><topic>Physical properties</topic><topic>Physical Sciences</topic><topic>Robustness (mathematics)</topic><topic>Science & Technology</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yamaguchi, Kaiyo</creatorcontrib><creatorcontrib>Endo, Takahiro</creatorcontrib><creatorcontrib>Kawai, Yuta</creatorcontrib><creatorcontrib>Matsuno, Fumitoshi</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of the Franklin Institute</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yamaguchi, Kaiyo</au><au>Endo, Takahiro</au><au>Kawai, Yuta</au><au>Matsuno, Fumitoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-collocated boundary control for contact-force control of a one-link flexible arm</atitle><jtitle>Journal of the Franklin Institute</jtitle><stitle>J FRANKLIN I</stitle><date>2020-05</date><risdate>2020</risdate><volume>357</volume><issue>7</issue><spage>4109</spage><epage>4131</epage><pages>4109-4131</pages><issn>0016-0032</issn><eissn>1879-2693</eissn><eissn>0016-0032</eissn><abstract>This paper deals with contact-force control of a one-link flexible arm whose tip is constrained to a rigid environment. To realize the contact-force control, a boundary controller is proposed based on a dynamic model represented by an infinite dimensional model. In particular, the proposed controller does not need the physical parameters in its implementation, and this results in the non-collocated boundary controller. The closed-loop system is analyzed in an appropriate Hilbert space, and it is shown that the exponential stability of the closed-loop system is obtained by setting the feedback gains to locate the eigenvalues of the closed-loop system on the complex left half-plane. In addition, in an attempt to realize the better control performance, another controller which is a modified version of our controller is proposed. Finally, the stability, robustness to the uncertainty in physical parameters, and disturbance response of the closed-loop system are investigated by numerical simulations.</abstract><cop>OXFORD</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jfranklin.2020.01.018</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-2231-5359</orcidid><orcidid>https://orcid.org/0000-0001-9685-3267</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-0032 |
ispartof | Journal of the Franklin Institute, 2020-05, Vol.357 (7), p.4109-4131 |
issn | 0016-0032 1879-2693 0016-0032 |
language | eng |
recordid | cdi_proquest_journals_2442332532 |
source | ScienceDirect Journals (5 years ago - present); Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Automation & Control Systems Boundary control Closed loop systems Computer simulation Contact force Control stability Controllers Dynamic models Eigenvalues Engineering Engineering, Electrical & Electronic Engineering, Multidisciplinary Feedback control Feedback control systems Hilbert space Mathematics Mathematics, Interdisciplinary Applications Numerical analysis Parameter uncertainty Physical properties Physical Sciences Robustness (mathematics) Science & Technology Technology |
title | Non-collocated boundary control for contact-force control of a one-link flexible arm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T13%3A38%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-collocated%20boundary%20control%20for%20contact-force%20control%20of%20a%20one-link%20flexible%20arm&rft.jtitle=Journal%20of%20the%20Franklin%20Institute&rft.au=Yamaguchi,%20Kaiyo&rft.date=2020-05&rft.volume=357&rft.issue=7&rft.spage=4109&rft.epage=4131&rft.pages=4109-4131&rft.issn=0016-0032&rft.eissn=1879-2693&rft_id=info:doi/10.1016/j.jfranklin.2020.01.018&rft_dat=%3Cproquest_webof%3E2442332532%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2442332532&rft_id=info:pmid/&rft_els_id=S0016003220300338&rfr_iscdi=true |