Rate of convergence of the Nesterov accelerated gradient method in the subcritical case α ≤ 3

In a Hilbert space setting ℋ, given Φ : ℋ → ℝ a convex continuously differentiable function, and α a positive parameter, we consider the inertial dynamic system with Asymptotic Vanishing Damping   Depending on the value of α with respect to 3, we give a complete picture of the convergence properties...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ESAIM. Control, optimisation and calculus of variations optimisation and calculus of variations, 2019-01, Vol.25, p.2
Hauptverfasser: Attouch, Hedy, Chbani, Zaki, Riahi, Hassan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 2
container_title ESAIM. Control, optimisation and calculus of variations
container_volume 25
creator Attouch, Hedy
Chbani, Zaki
Riahi, Hassan
description In a Hilbert space setting ℋ, given Φ : ℋ → ℝ a convex continuously differentiable function, and α a positive parameter, we consider the inertial dynamic system with Asymptotic Vanishing Damping   Depending on the value of α with respect to 3, we give a complete picture of the convergence properties as t → +∞ of the trajectories generated by (AVD)α, as well as iterations of the corresponding algorithms. Indeed, as shown by Su-Boyd-Candès, the case α = 3 corresponds to a continuous version of the accelerated gradient method of Nesterov, with the rate of convergence Φ(x(t)) − min Φ = O(t−2) for α ≥ 3. Our main result concerns the subcritical case α ≤ 3, where we show that Φ(x(t)) − min Φ = O(t−⅔α). This overall picture shows a continuous variation of the rate of convergence of the values Φ(x(t)) − minℋ Φ = O(t−p(α)) with respect to α > 0: the coefficient p(α) increases linearly up to 2 when α goes from 0 to 3, then displays a plateau. Then we examine the convergence of trajectories to optimal solutions. As a new result, in the one-dimensional framework, for the critical value α = 3, we prove the convergence of the trajectories. In the second part of this paper, we study the convergence properties of the associated forward-backward inertial algorithms. They aim to solve structured convex minimization problems of the form min {Θ := Φ + Ψ}, with Φ smooth and Ψ nonsmooth. The continuous dynamics serves as a guideline for this study. We obtain a similar rate of convergence for the sequence of iterates (xk): for α ≤ 3 we have Θ(xk) − min Θ = O(k−p) for all p < 2α/3, and for α > 3 Θ(xk) − min Θ = o(k−2). Finally, we show that the results are robust with respect to external perturbations.
doi_str_mv 10.1051/cocv/2017083
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2442331738</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2442331738</sourcerecordid><originalsourceid>FETCH-LOGICAL-c231t-d0c5d5fac1f98be7f0b9864683f5ee2f084fecb4d9b83594a659c18b15df040e3</originalsourceid><addsrcrecordid>eNo90EtOwzAQBmALgUR57DiAJbaE-pXYWaKKl1RAQkDZGccZtyltXOy0giNwDy7ARTgEJyF9iNXMSJ9mRj9CR5ScUpLSrvV20WWESqL4FupQlrGEcym3l33OEkVpvov2YhwTQjMuRAe93JsGsHfY-noBYQi1XY3NCPAtxAaCX2BjLUwgtLLEw2DKCuoGT6EZ-RJX9crGeWFD1VTWTLA1EfDPN_79_ML8AO04M4lwuKn76PHi_KF3lfTvLq97Z_3EMk6bpCQ2LVNnLHW5KkA6UuQqE5niLgVgjijhwBaizAvF01yYLM0tVQVNS0cEAb6Pjtd7Z8G_zdvP9djPQ92e1EwIxjmVXLXqZK1s8DEGcHoWqqkJH5oSvcxQLzPUmwxbnqx51Sbx_m9NeNWZ5DLVigz0RfY8UE-XN1ryP3a5dbI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2442331738</pqid></control><display><type>article</type><title>Rate of convergence of the Nesterov accelerated gradient method in the subcritical case α ≤ 3</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Attouch, Hedy ; Chbani, Zaki ; Riahi, Hassan</creator><creatorcontrib>Attouch, Hedy ; Chbani, Zaki ; Riahi, Hassan</creatorcontrib><description>In a Hilbert space setting ℋ, given Φ : ℋ → ℝ a convex continuously differentiable function, and α a positive parameter, we consider the inertial dynamic system with Asymptotic Vanishing Damping   Depending on the value of α with respect to 3, we give a complete picture of the convergence properties as t → +∞ of the trajectories generated by (AVD)α, as well as iterations of the corresponding algorithms. Indeed, as shown by Su-Boyd-Candès, the case α = 3 corresponds to a continuous version of the accelerated gradient method of Nesterov, with the rate of convergence Φ(x(t)) − min Φ = O(t−2) for α ≥ 3. Our main result concerns the subcritical case α ≤ 3, where we show that Φ(x(t)) − min Φ = O(t−⅔α). This overall picture shows a continuous variation of the rate of convergence of the values Φ(x(t)) − minℋ Φ = O(t−p(α)) with respect to α &gt; 0: the coefficient p(α) increases linearly up to 2 when α goes from 0 to 3, then displays a plateau. Then we examine the convergence of trajectories to optimal solutions. As a new result, in the one-dimensional framework, for the critical value α = 3, we prove the convergence of the trajectories. In the second part of this paper, we study the convergence properties of the associated forward-backward inertial algorithms. They aim to solve structured convex minimization problems of the form min {Θ := Φ + Ψ}, with Φ smooth and Ψ nonsmooth. The continuous dynamics serves as a guideline for this study. We obtain a similar rate of convergence for the sequence of iterates (xk): for α ≤ 3 we have Θ(xk) − min Θ = O(k−p) for all p &lt; 2α/3, and for α &gt; 3 Θ(xk) − min Θ = o(k−2). Finally, we show that the results are robust with respect to external perturbations.</description><identifier>ISSN: 1292-8119</identifier><identifier>EISSN: 1262-3377</identifier><identifier>DOI: 10.1051/cocv/2017083</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>49M37 ; 65K05 ; 90C25 ; Accelerated gradient method ; Algorithms ; Convergence ; Damping ; FISTA ; Hilbert space ; inertial forward-backward algorithms ; Nesterov method ; Optimization ; proximal-based methods ; structured convex optimization ; subcritical case ; vanishing damping</subject><ispartof>ESAIM. Control, optimisation and calculus of variations, 2019-01, Vol.25, p.2</ispartof><rights>2019. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://www.esaim-cocv.org/articles/cocv/abs/2019/01/cocv170092/cocv170092.html .</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c231t-d0c5d5fac1f98be7f0b9864683f5ee2f084fecb4d9b83594a659c18b15df040e3</citedby><cites>FETCH-LOGICAL-c231t-d0c5d5fac1f98be7f0b9864683f5ee2f084fecb4d9b83594a659c18b15df040e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Attouch, Hedy</creatorcontrib><creatorcontrib>Chbani, Zaki</creatorcontrib><creatorcontrib>Riahi, Hassan</creatorcontrib><title>Rate of convergence of the Nesterov accelerated gradient method in the subcritical case α ≤ 3</title><title>ESAIM. Control, optimisation and calculus of variations</title><description>In a Hilbert space setting ℋ, given Φ : ℋ → ℝ a convex continuously differentiable function, and α a positive parameter, we consider the inertial dynamic system with Asymptotic Vanishing Damping   Depending on the value of α with respect to 3, we give a complete picture of the convergence properties as t → +∞ of the trajectories generated by (AVD)α, as well as iterations of the corresponding algorithms. Indeed, as shown by Su-Boyd-Candès, the case α = 3 corresponds to a continuous version of the accelerated gradient method of Nesterov, with the rate of convergence Φ(x(t)) − min Φ = O(t−2) for α ≥ 3. Our main result concerns the subcritical case α ≤ 3, where we show that Φ(x(t)) − min Φ = O(t−⅔α). This overall picture shows a continuous variation of the rate of convergence of the values Φ(x(t)) − minℋ Φ = O(t−p(α)) with respect to α &gt; 0: the coefficient p(α) increases linearly up to 2 when α goes from 0 to 3, then displays a plateau. Then we examine the convergence of trajectories to optimal solutions. As a new result, in the one-dimensional framework, for the critical value α = 3, we prove the convergence of the trajectories. In the second part of this paper, we study the convergence properties of the associated forward-backward inertial algorithms. They aim to solve structured convex minimization problems of the form min {Θ := Φ + Ψ}, with Φ smooth and Ψ nonsmooth. The continuous dynamics serves as a guideline for this study. We obtain a similar rate of convergence for the sequence of iterates (xk): for α ≤ 3 we have Θ(xk) − min Θ = O(k−p) for all p &lt; 2α/3, and for α &gt; 3 Θ(xk) − min Θ = o(k−2). Finally, we show that the results are robust with respect to external perturbations.</description><subject>49M37</subject><subject>65K05</subject><subject>90C25</subject><subject>Accelerated gradient method</subject><subject>Algorithms</subject><subject>Convergence</subject><subject>Damping</subject><subject>FISTA</subject><subject>Hilbert space</subject><subject>inertial forward-backward algorithms</subject><subject>Nesterov method</subject><subject>Optimization</subject><subject>proximal-based methods</subject><subject>structured convex optimization</subject><subject>subcritical case</subject><subject>vanishing damping</subject><issn>1292-8119</issn><issn>1262-3377</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo90EtOwzAQBmALgUR57DiAJbaE-pXYWaKKl1RAQkDZGccZtyltXOy0giNwDy7ARTgEJyF9iNXMSJ9mRj9CR5ScUpLSrvV20WWESqL4FupQlrGEcym3l33OEkVpvov2YhwTQjMuRAe93JsGsHfY-noBYQi1XY3NCPAtxAaCX2BjLUwgtLLEw2DKCuoGT6EZ-RJX9crGeWFD1VTWTLA1EfDPN_79_ML8AO04M4lwuKn76PHi_KF3lfTvLq97Z_3EMk6bpCQ2LVNnLHW5KkA6UuQqE5niLgVgjijhwBaizAvF01yYLM0tVQVNS0cEAb6Pjtd7Z8G_zdvP9djPQ92e1EwIxjmVXLXqZK1s8DEGcHoWqqkJH5oSvcxQLzPUmwxbnqx51Sbx_m9NeNWZ5DLVigz0RfY8UE-XN1ryP3a5dbI</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Attouch, Hedy</creator><creator>Chbani, Zaki</creator><creator>Riahi, Hassan</creator><general>EDP Sciences</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20190101</creationdate><title>Rate of convergence of the Nesterov accelerated gradient method in the subcritical case α ≤ 3</title><author>Attouch, Hedy ; Chbani, Zaki ; Riahi, Hassan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c231t-d0c5d5fac1f98be7f0b9864683f5ee2f084fecb4d9b83594a659c18b15df040e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>49M37</topic><topic>65K05</topic><topic>90C25</topic><topic>Accelerated gradient method</topic><topic>Algorithms</topic><topic>Convergence</topic><topic>Damping</topic><topic>FISTA</topic><topic>Hilbert space</topic><topic>inertial forward-backward algorithms</topic><topic>Nesterov method</topic><topic>Optimization</topic><topic>proximal-based methods</topic><topic>structured convex optimization</topic><topic>subcritical case</topic><topic>vanishing damping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Attouch, Hedy</creatorcontrib><creatorcontrib>Chbani, Zaki</creatorcontrib><creatorcontrib>Riahi, Hassan</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>ESAIM. Control, optimisation and calculus of variations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Attouch, Hedy</au><au>Chbani, Zaki</au><au>Riahi, Hassan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rate of convergence of the Nesterov accelerated gradient method in the subcritical case α ≤ 3</atitle><jtitle>ESAIM. Control, optimisation and calculus of variations</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>25</volume><spage>2</spage><pages>2-</pages><issn>1292-8119</issn><eissn>1262-3377</eissn><abstract>In a Hilbert space setting ℋ, given Φ : ℋ → ℝ a convex continuously differentiable function, and α a positive parameter, we consider the inertial dynamic system with Asymptotic Vanishing Damping   Depending on the value of α with respect to 3, we give a complete picture of the convergence properties as t → +∞ of the trajectories generated by (AVD)α, as well as iterations of the corresponding algorithms. Indeed, as shown by Su-Boyd-Candès, the case α = 3 corresponds to a continuous version of the accelerated gradient method of Nesterov, with the rate of convergence Φ(x(t)) − min Φ = O(t−2) for α ≥ 3. Our main result concerns the subcritical case α ≤ 3, where we show that Φ(x(t)) − min Φ = O(t−⅔α). This overall picture shows a continuous variation of the rate of convergence of the values Φ(x(t)) − minℋ Φ = O(t−p(α)) with respect to α &gt; 0: the coefficient p(α) increases linearly up to 2 when α goes from 0 to 3, then displays a plateau. Then we examine the convergence of trajectories to optimal solutions. As a new result, in the one-dimensional framework, for the critical value α = 3, we prove the convergence of the trajectories. In the second part of this paper, we study the convergence properties of the associated forward-backward inertial algorithms. They aim to solve structured convex minimization problems of the form min {Θ := Φ + Ψ}, with Φ smooth and Ψ nonsmooth. The continuous dynamics serves as a guideline for this study. We obtain a similar rate of convergence for the sequence of iterates (xk): for α ≤ 3 we have Θ(xk) − min Θ = O(k−p) for all p &lt; 2α/3, and for α &gt; 3 Θ(xk) − min Θ = o(k−2). Finally, we show that the results are robust with respect to external perturbations.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/cocv/2017083</doi></addata></record>
fulltext fulltext
identifier ISSN: 1292-8119
ispartof ESAIM. Control, optimisation and calculus of variations, 2019-01, Vol.25, p.2
issn 1292-8119
1262-3377
language eng
recordid cdi_proquest_journals_2442331738
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects 49M37
65K05
90C25
Accelerated gradient method
Algorithms
Convergence
Damping
FISTA
Hilbert space
inertial forward-backward algorithms
Nesterov method
Optimization
proximal-based methods
structured convex optimization
subcritical case
vanishing damping
title Rate of convergence of the Nesterov accelerated gradient method in the subcritical case α ≤ 3
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T16%3A53%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rate%20of%20convergence%20of%20the%20Nesterov%20accelerated%20gradient%20method%20in%20the%20subcritical%20case%20%CE%B1%20%E2%89%A4%203&rft.jtitle=ESAIM.%20Control,%20optimisation%20and%20calculus%20of%20variations&rft.au=Attouch,%20Hedy&rft.date=2019-01-01&rft.volume=25&rft.spage=2&rft.pages=2-&rft.issn=1292-8119&rft.eissn=1262-3377&rft_id=info:doi/10.1051/cocv/2017083&rft_dat=%3Cproquest_cross%3E2442331738%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2442331738&rft_id=info:pmid/&rfr_iscdi=true