Universal Scherrer equation for graphene fragments

Graphene fragments spanning a wide range of size and shape were studied computationally using the Debye scattering equation. The calculated diffraction patterns were analysed using the Scherrer equation to infer the fragment size, La. Comparison with the known fragment sizes reveals a strong affine...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbon (New York) 2020-06, Vol.162, p.475-480
Hauptverfasser: Lim, Daniel J., Marks, Nigel A., Rowles, Matthew R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 480
container_issue
container_start_page 475
container_title Carbon (New York)
container_volume 162
creator Lim, Daniel J.
Marks, Nigel A.
Rowles, Matthew R.
description Graphene fragments spanning a wide range of size and shape were studied computationally using the Debye scattering equation. The calculated diffraction patterns were analysed using the Scherrer equation to infer the fragment size, La. Comparison with the known fragment sizes reveals a strong affine relationship between La and the Scherrer quantity λ/(Bcosθ). To preserve this relationship, we propose modifying the Scherrer equation to include an empirical additive constant. Our approach solves the well-known problem of size-dependence in the shape factor and yields a universal expression by defining La as the square-root of the fragment area. The relationship between observed diffraction peak positions and unit cell parameters is also discussed. [Display omitted]
doi_str_mv 10.1016/j.carbon.2020.02.064
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2442320862</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622320302104</els_id><sourcerecordid>2442320862</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-87f4913e07846700b03f648cff05878a3544296ebf79a7e5f803a0f52875d3203</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFb_gYeA58TZj2Q3F0GKX1DwoD0v2-1sm9Am7Wxa8N-7JZ49DQPv8w7zMHbPoeDAq8e28I6WfVcIEFCAKKBSF2zCjZa5NDW_ZBMAMHklhLxmNzG2aVWGqwkTi645IUW3zb78BomQMjwc3dD0XRZ6ytbk9hvsMAvk1jvshnjLroLbRrz7m1O2eH35nr3n88-3j9nzPPfSwJAbHVTNJYI2qtIAS5ChUsaHAKXRxslSKVFXuAy6dhrLYEA6CKUwulxJAXLKHsbePfWHI8bBtv2RunTSioSmiKlESqkx5amPkTDYPTU7Rz-Wgz3bsa0d7dizHQvCJjsJexoxTB-cGiQbfYOdx1VD6Ae76pv_C34Bia1tdA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2442320862</pqid></control><display><type>article</type><title>Universal Scherrer equation for graphene fragments</title><source>Elsevier ScienceDirect Journals</source><creator>Lim, Daniel J. ; Marks, Nigel A. ; Rowles, Matthew R.</creator><creatorcontrib>Lim, Daniel J. ; Marks, Nigel A. ; Rowles, Matthew R.</creatorcontrib><description>Graphene fragments spanning a wide range of size and shape were studied computationally using the Debye scattering equation. The calculated diffraction patterns were analysed using the Scherrer equation to infer the fragment size, La. Comparison with the known fragment sizes reveals a strong affine relationship between La and the Scherrer quantity λ/(Bcosθ). To preserve this relationship, we propose modifying the Scherrer equation to include an empirical additive constant. Our approach solves the well-known problem of size-dependence in the shape factor and yields a universal expression by defining La as the square-root of the fragment area. The relationship between observed diffraction peak positions and unit cell parameters is also discussed. [Display omitted]</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2020.02.064</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Diffraction ; Diffraction patterns ; Empirical equations ; Fragments ; Graphene ; Molecules ; Nonlinear equations ; Scattering ; Shape factor ; Studies ; Unit cell</subject><ispartof>Carbon (New York), 2020-06, Vol.162, p.475-480</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jun 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-87f4913e07846700b03f648cff05878a3544296ebf79a7e5f803a0f52875d3203</citedby><cites>FETCH-LOGICAL-c380t-87f4913e07846700b03f648cff05878a3544296ebf79a7e5f803a0f52875d3203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0008622320302104$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Lim, Daniel J.</creatorcontrib><creatorcontrib>Marks, Nigel A.</creatorcontrib><creatorcontrib>Rowles, Matthew R.</creatorcontrib><title>Universal Scherrer equation for graphene fragments</title><title>Carbon (New York)</title><description>Graphene fragments spanning a wide range of size and shape were studied computationally using the Debye scattering equation. The calculated diffraction patterns were analysed using the Scherrer equation to infer the fragment size, La. Comparison with the known fragment sizes reveals a strong affine relationship between La and the Scherrer quantity λ/(Bcosθ). To preserve this relationship, we propose modifying the Scherrer equation to include an empirical additive constant. Our approach solves the well-known problem of size-dependence in the shape factor and yields a universal expression by defining La as the square-root of the fragment area. The relationship between observed diffraction peak positions and unit cell parameters is also discussed. [Display omitted]</description><subject>Diffraction</subject><subject>Diffraction patterns</subject><subject>Empirical equations</subject><subject>Fragments</subject><subject>Graphene</subject><subject>Molecules</subject><subject>Nonlinear equations</subject><subject>Scattering</subject><subject>Shape factor</subject><subject>Studies</subject><subject>Unit cell</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRsFb_gYeA58TZj2Q3F0GKX1DwoD0v2-1sm9Am7Wxa8N-7JZ49DQPv8w7zMHbPoeDAq8e28I6WfVcIEFCAKKBSF2zCjZa5NDW_ZBMAMHklhLxmNzG2aVWGqwkTi645IUW3zb78BomQMjwc3dD0XRZ6ytbk9hvsMAvk1jvshnjLroLbRrz7m1O2eH35nr3n88-3j9nzPPfSwJAbHVTNJYI2qtIAS5ChUsaHAKXRxslSKVFXuAy6dhrLYEA6CKUwulxJAXLKHsbePfWHI8bBtv2RunTSioSmiKlESqkx5amPkTDYPTU7Rz-Wgz3bsa0d7dizHQvCJjsJexoxTB-cGiQbfYOdx1VD6Ae76pv_C34Bia1tdA</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>Lim, Daniel J.</creator><creator>Marks, Nigel A.</creator><creator>Rowles, Matthew R.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>202006</creationdate><title>Universal Scherrer equation for graphene fragments</title><author>Lim, Daniel J. ; Marks, Nigel A. ; Rowles, Matthew R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-87f4913e07846700b03f648cff05878a3544296ebf79a7e5f803a0f52875d3203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Diffraction</topic><topic>Diffraction patterns</topic><topic>Empirical equations</topic><topic>Fragments</topic><topic>Graphene</topic><topic>Molecules</topic><topic>Nonlinear equations</topic><topic>Scattering</topic><topic>Shape factor</topic><topic>Studies</topic><topic>Unit cell</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lim, Daniel J.</creatorcontrib><creatorcontrib>Marks, Nigel A.</creatorcontrib><creatorcontrib>Rowles, Matthew R.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lim, Daniel J.</au><au>Marks, Nigel A.</au><au>Rowles, Matthew R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Universal Scherrer equation for graphene fragments</atitle><jtitle>Carbon (New York)</jtitle><date>2020-06</date><risdate>2020</risdate><volume>162</volume><spage>475</spage><epage>480</epage><pages>475-480</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><abstract>Graphene fragments spanning a wide range of size and shape were studied computationally using the Debye scattering equation. The calculated diffraction patterns were analysed using the Scherrer equation to infer the fragment size, La. Comparison with the known fragment sizes reveals a strong affine relationship between La and the Scherrer quantity λ/(Bcosθ). To preserve this relationship, we propose modifying the Scherrer equation to include an empirical additive constant. Our approach solves the well-known problem of size-dependence in the shape factor and yields a universal expression by defining La as the square-root of the fragment area. The relationship between observed diffraction peak positions and unit cell parameters is also discussed. [Display omitted]</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2020.02.064</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0008-6223
ispartof Carbon (New York), 2020-06, Vol.162, p.475-480
issn 0008-6223
1873-3891
language eng
recordid cdi_proquest_journals_2442320862
source Elsevier ScienceDirect Journals
subjects Diffraction
Diffraction patterns
Empirical equations
Fragments
Graphene
Molecules
Nonlinear equations
Scattering
Shape factor
Studies
Unit cell
title Universal Scherrer equation for graphene fragments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T18%3A20%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Universal%20Scherrer%20equation%20for%20graphene%20fragments&rft.jtitle=Carbon%20(New%20York)&rft.au=Lim,%20Daniel%20J.&rft.date=2020-06&rft.volume=162&rft.spage=475&rft.epage=480&rft.pages=475-480&rft.issn=0008-6223&rft.eissn=1873-3891&rft_id=info:doi/10.1016/j.carbon.2020.02.064&rft_dat=%3Cproquest_cross%3E2442320862%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2442320862&rft_id=info:pmid/&rft_els_id=S0008622320302104&rfr_iscdi=true