A variational multiscale framework for atmospheric turbulent flows over complex environmental terrains

A residual-based variational multi-scale (VMS) modeling framework is applied to simulate atmospheric flow over complex environmental terrains. The VMS framework is verified and validated using two test cases using linear finite element (FEM) and quadratic non-uniform rational B-spline (NURBS) discre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods in applied mechanics and engineering 2020-08, Vol.368, p.113182, Article 113182
Hauptverfasser: Ravensbergen, M., Helgedagsrud, T.A., Bazilevs, Y., Korobenko, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 113182
container_title Computer methods in applied mechanics and engineering
container_volume 368
creator Ravensbergen, M.
Helgedagsrud, T.A.
Bazilevs, Y.
Korobenko, A.
description A residual-based variational multi-scale (VMS) modeling framework is applied to simulate atmospheric flow over complex environmental terrains. The VMS framework is verified and validated using two test cases using linear finite element (FEM) and quadratic non-uniform rational B-spline (NURBS) discretizations. First, the flow over the 3D, axisymmetric Gaussian hill (normally distributed surface) is used to compare the results with FEM and NURBS discretization. Next, the actual terrain of the Bolund hill is used to demonstrate the efficacy of the framework. Good agreement with published data, coming from simulations and field measurements, is achieved, with the NURBS discretization showing much better per-degree-of-freedom accuracy compared with linear FEM. The paper includes a comprehensive review of experimental and numerical methods, and the corresponding challenges, for complex-terrain flows, which provides a proper context for the developments presented in this work. •VMS framework is applied to simulate atmospheric flow over complex environmental terrains.•FEM and NURBS discretization techniques are adopted to simulate the flow over the Gaussian hill, and Bolund hill is modeled using NURBS-based discretization.•Mesh refinement study is performed to ensure the grid converged solution is obtained.•Good agreement with field measurements is achieved at various locations.
doi_str_mv 10.1016/j.cma.2020.113182
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2442320215</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782520303674</els_id><sourcerecordid>2442320215</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-ccf5019d049f761f3b0c0ae096836dcdcc59b43a82053879b8c6d21e4fc69d513</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEuXxAewssU7xI0kTsaoQL6kSG1hb7mQsXJK4jJ0Cf4-rsmY2o9HcO5p7GLuSYi6FrG82cxjsXAmVZ6llo47YTDaLtlBSN8dsJkRZFYtGVafsLMaNyNVINWNuyXeWvE0-jLbnw9QnH8H2yB3ZAb8CfXAXiNs0hLh9R_LA00TrqccxcdeHr8jDDolDGLY9fnMcd57COOR1vpeQyPoxXrATZ_uIl3_9nL093L_ePRWrl8fnu-WqgFKXqQBwlZBtJ8rWLWrp9FqAsCjautF1Bx1A1a5LbRslKp3TrRuoOyWxdFC3XSX1Obs-3N1S-JwwJrMJE-Vk0aiyVDoDklVWyYMKKMRI6MyW_GDpx0hh9jjNxmScZo_THHBmz-3Bg_n9nUcyETyOgJ0nhGS64P9x_wI8yH81</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2442320215</pqid></control><display><type>article</type><title>A variational multiscale framework for atmospheric turbulent flows over complex environmental terrains</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Ravensbergen, M. ; Helgedagsrud, T.A. ; Bazilevs, Y. ; Korobenko, A.</creator><creatorcontrib>Ravensbergen, M. ; Helgedagsrud, T.A. ; Bazilevs, Y. ; Korobenko, A.</creatorcontrib><description>A residual-based variational multi-scale (VMS) modeling framework is applied to simulate atmospheric flow over complex environmental terrains. The VMS framework is verified and validated using two test cases using linear finite element (FEM) and quadratic non-uniform rational B-spline (NURBS) discretizations. First, the flow over the 3D, axisymmetric Gaussian hill (normally distributed surface) is used to compare the results with FEM and NURBS discretization. Next, the actual terrain of the Bolund hill is used to demonstrate the efficacy of the framework. Good agreement with published data, coming from simulations and field measurements, is achieved, with the NURBS discretization showing much better per-degree-of-freedom accuracy compared with linear FEM. The paper includes a comprehensive review of experimental and numerical methods, and the corresponding challenges, for complex-terrain flows, which provides a proper context for the developments presented in this work. •VMS framework is applied to simulate atmospheric flow over complex environmental terrains.•FEM and NURBS discretization techniques are adopted to simulate the flow over the Gaussian hill, and Bolund hill is modeled using NURBS-based discretization.•Mesh refinement study is performed to ensure the grid converged solution is obtained.•Good agreement with field measurements is achieved at various locations.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2020.113182</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Atmospheric models ; CFD ; Complex terrain ; Computational fluid dynamics ; Computer simulation ; Discretization ; FEM ; Finite element method ; IGA ; Mathematical analysis ; Numerical methods ; NURBS ; Terrain ; Three dimensional flow ; VMS</subject><ispartof>Computer methods in applied mechanics and engineering, 2020-08, Vol.368, p.113182, Article 113182</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Aug 15, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-ccf5019d049f761f3b0c0ae096836dcdcc59b43a82053879b8c6d21e4fc69d513</citedby><cites>FETCH-LOGICAL-c434t-ccf5019d049f761f3b0c0ae096836dcdcc59b43a82053879b8c6d21e4fc69d513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0045782520303674$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Ravensbergen, M.</creatorcontrib><creatorcontrib>Helgedagsrud, T.A.</creatorcontrib><creatorcontrib>Bazilevs, Y.</creatorcontrib><creatorcontrib>Korobenko, A.</creatorcontrib><title>A variational multiscale framework for atmospheric turbulent flows over complex environmental terrains</title><title>Computer methods in applied mechanics and engineering</title><description>A residual-based variational multi-scale (VMS) modeling framework is applied to simulate atmospheric flow over complex environmental terrains. The VMS framework is verified and validated using two test cases using linear finite element (FEM) and quadratic non-uniform rational B-spline (NURBS) discretizations. First, the flow over the 3D, axisymmetric Gaussian hill (normally distributed surface) is used to compare the results with FEM and NURBS discretization. Next, the actual terrain of the Bolund hill is used to demonstrate the efficacy of the framework. Good agreement with published data, coming from simulations and field measurements, is achieved, with the NURBS discretization showing much better per-degree-of-freedom accuracy compared with linear FEM. The paper includes a comprehensive review of experimental and numerical methods, and the corresponding challenges, for complex-terrain flows, which provides a proper context for the developments presented in this work. •VMS framework is applied to simulate atmospheric flow over complex environmental terrains.•FEM and NURBS discretization techniques are adopted to simulate the flow over the Gaussian hill, and Bolund hill is modeled using NURBS-based discretization.•Mesh refinement study is performed to ensure the grid converged solution is obtained.•Good agreement with field measurements is achieved at various locations.</description><subject>Atmospheric models</subject><subject>CFD</subject><subject>Complex terrain</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Discretization</subject><subject>FEM</subject><subject>Finite element method</subject><subject>IGA</subject><subject>Mathematical analysis</subject><subject>Numerical methods</subject><subject>NURBS</subject><subject>Terrain</subject><subject>Three dimensional flow</subject><subject>VMS</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEuXxAewssU7xI0kTsaoQL6kSG1hb7mQsXJK4jJ0Cf4-rsmY2o9HcO5p7GLuSYi6FrG82cxjsXAmVZ6llo47YTDaLtlBSN8dsJkRZFYtGVafsLMaNyNVINWNuyXeWvE0-jLbnw9QnH8H2yB3ZAb8CfXAXiNs0hLh9R_LA00TrqccxcdeHr8jDDolDGLY9fnMcd57COOR1vpeQyPoxXrATZ_uIl3_9nL093L_ePRWrl8fnu-WqgFKXqQBwlZBtJ8rWLWrp9FqAsCjautF1Bx1A1a5LbRslKp3TrRuoOyWxdFC3XSX1Obs-3N1S-JwwJrMJE-Vk0aiyVDoDklVWyYMKKMRI6MyW_GDpx0hh9jjNxmScZo_THHBmz-3Bg_n9nUcyETyOgJ0nhGS64P9x_wI8yH81</recordid><startdate>20200815</startdate><enddate>20200815</enddate><creator>Ravensbergen, M.</creator><creator>Helgedagsrud, T.A.</creator><creator>Bazilevs, Y.</creator><creator>Korobenko, A.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20200815</creationdate><title>A variational multiscale framework for atmospheric turbulent flows over complex environmental terrains</title><author>Ravensbergen, M. ; Helgedagsrud, T.A. ; Bazilevs, Y. ; Korobenko, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-ccf5019d049f761f3b0c0ae096836dcdcc59b43a82053879b8c6d21e4fc69d513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Atmospheric models</topic><topic>CFD</topic><topic>Complex terrain</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Discretization</topic><topic>FEM</topic><topic>Finite element method</topic><topic>IGA</topic><topic>Mathematical analysis</topic><topic>Numerical methods</topic><topic>NURBS</topic><topic>Terrain</topic><topic>Three dimensional flow</topic><topic>VMS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ravensbergen, M.</creatorcontrib><creatorcontrib>Helgedagsrud, T.A.</creatorcontrib><creatorcontrib>Bazilevs, Y.</creatorcontrib><creatorcontrib>Korobenko, A.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ravensbergen, M.</au><au>Helgedagsrud, T.A.</au><au>Bazilevs, Y.</au><au>Korobenko, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A variational multiscale framework for atmospheric turbulent flows over complex environmental terrains</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2020-08-15</date><risdate>2020</risdate><volume>368</volume><spage>113182</spage><pages>113182-</pages><artnum>113182</artnum><issn>0045-7825</issn><eissn>1879-2138</eissn><abstract>A residual-based variational multi-scale (VMS) modeling framework is applied to simulate atmospheric flow over complex environmental terrains. The VMS framework is verified and validated using two test cases using linear finite element (FEM) and quadratic non-uniform rational B-spline (NURBS) discretizations. First, the flow over the 3D, axisymmetric Gaussian hill (normally distributed surface) is used to compare the results with FEM and NURBS discretization. Next, the actual terrain of the Bolund hill is used to demonstrate the efficacy of the framework. Good agreement with published data, coming from simulations and field measurements, is achieved, with the NURBS discretization showing much better per-degree-of-freedom accuracy compared with linear FEM. The paper includes a comprehensive review of experimental and numerical methods, and the corresponding challenges, for complex-terrain flows, which provides a proper context for the developments presented in this work. •VMS framework is applied to simulate atmospheric flow over complex environmental terrains.•FEM and NURBS discretization techniques are adopted to simulate the flow over the Gaussian hill, and Bolund hill is modeled using NURBS-based discretization.•Mesh refinement study is performed to ensure the grid converged solution is obtained.•Good agreement with field measurements is achieved at various locations.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2020.113182</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0045-7825
ispartof Computer methods in applied mechanics and engineering, 2020-08, Vol.368, p.113182, Article 113182
issn 0045-7825
1879-2138
language eng
recordid cdi_proquest_journals_2442320215
source Elsevier ScienceDirect Journals Complete
subjects Atmospheric models
CFD
Complex terrain
Computational fluid dynamics
Computer simulation
Discretization
FEM
Finite element method
IGA
Mathematical analysis
Numerical methods
NURBS
Terrain
Three dimensional flow
VMS
title A variational multiscale framework for atmospheric turbulent flows over complex environmental terrains
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T16%3A56%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20variational%20multiscale%20framework%20for%20atmospheric%20turbulent%20flows%20over%20complex%20environmental%20terrains&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Ravensbergen,%20M.&rft.date=2020-08-15&rft.volume=368&rft.spage=113182&rft.pages=113182-&rft.artnum=113182&rft.issn=0045-7825&rft.eissn=1879-2138&rft_id=info:doi/10.1016/j.cma.2020.113182&rft_dat=%3Cproquest_cross%3E2442320215%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2442320215&rft_id=info:pmid/&rft_els_id=S0045782520303674&rfr_iscdi=true