A variational multiscale framework for atmospheric turbulent flows over complex environmental terrains
A residual-based variational multi-scale (VMS) modeling framework is applied to simulate atmospheric flow over complex environmental terrains. The VMS framework is verified and validated using two test cases using linear finite element (FEM) and quadratic non-uniform rational B-spline (NURBS) discre...
Gespeichert in:
Veröffentlicht in: | Computer methods in applied mechanics and engineering 2020-08, Vol.368, p.113182, Article 113182 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 113182 |
container_title | Computer methods in applied mechanics and engineering |
container_volume | 368 |
creator | Ravensbergen, M. Helgedagsrud, T.A. Bazilevs, Y. Korobenko, A. |
description | A residual-based variational multi-scale (VMS) modeling framework is applied to simulate atmospheric flow over complex environmental terrains. The VMS framework is verified and validated using two test cases using linear finite element (FEM) and quadratic non-uniform rational B-spline (NURBS) discretizations. First, the flow over the 3D, axisymmetric Gaussian hill (normally distributed surface) is used to compare the results with FEM and NURBS discretization. Next, the actual terrain of the Bolund hill is used to demonstrate the efficacy of the framework. Good agreement with published data, coming from simulations and field measurements, is achieved, with the NURBS discretization showing much better per-degree-of-freedom accuracy compared with linear FEM. The paper includes a comprehensive review of experimental and numerical methods, and the corresponding challenges, for complex-terrain flows, which provides a proper context for the developments presented in this work.
•VMS framework is applied to simulate atmospheric flow over complex environmental terrains.•FEM and NURBS discretization techniques are adopted to simulate the flow over the Gaussian hill, and Bolund hill is modeled using NURBS-based discretization.•Mesh refinement study is performed to ensure the grid converged solution is obtained.•Good agreement with field measurements is achieved at various locations. |
doi_str_mv | 10.1016/j.cma.2020.113182 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2442320215</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782520303674</els_id><sourcerecordid>2442320215</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-ccf5019d049f761f3b0c0ae096836dcdcc59b43a82053879b8c6d21e4fc69d513</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEuXxAewssU7xI0kTsaoQL6kSG1hb7mQsXJK4jJ0Cf4-rsmY2o9HcO5p7GLuSYi6FrG82cxjsXAmVZ6llo47YTDaLtlBSN8dsJkRZFYtGVafsLMaNyNVINWNuyXeWvE0-jLbnw9QnH8H2yB3ZAb8CfXAXiNs0hLh9R_LA00TrqccxcdeHr8jDDolDGLY9fnMcd57COOR1vpeQyPoxXrATZ_uIl3_9nL093L_ePRWrl8fnu-WqgFKXqQBwlZBtJ8rWLWrp9FqAsCjautF1Bx1A1a5LbRslKp3TrRuoOyWxdFC3XSX1Obs-3N1S-JwwJrMJE-Vk0aiyVDoDklVWyYMKKMRI6MyW_GDpx0hh9jjNxmScZo_THHBmz-3Bg_n9nUcyETyOgJ0nhGS64P9x_wI8yH81</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2442320215</pqid></control><display><type>article</type><title>A variational multiscale framework for atmospheric turbulent flows over complex environmental terrains</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Ravensbergen, M. ; Helgedagsrud, T.A. ; Bazilevs, Y. ; Korobenko, A.</creator><creatorcontrib>Ravensbergen, M. ; Helgedagsrud, T.A. ; Bazilevs, Y. ; Korobenko, A.</creatorcontrib><description>A residual-based variational multi-scale (VMS) modeling framework is applied to simulate atmospheric flow over complex environmental terrains. The VMS framework is verified and validated using two test cases using linear finite element (FEM) and quadratic non-uniform rational B-spline (NURBS) discretizations. First, the flow over the 3D, axisymmetric Gaussian hill (normally distributed surface) is used to compare the results with FEM and NURBS discretization. Next, the actual terrain of the Bolund hill is used to demonstrate the efficacy of the framework. Good agreement with published data, coming from simulations and field measurements, is achieved, with the NURBS discretization showing much better per-degree-of-freedom accuracy compared with linear FEM. The paper includes a comprehensive review of experimental and numerical methods, and the corresponding challenges, for complex-terrain flows, which provides a proper context for the developments presented in this work.
•VMS framework is applied to simulate atmospheric flow over complex environmental terrains.•FEM and NURBS discretization techniques are adopted to simulate the flow over the Gaussian hill, and Bolund hill is modeled using NURBS-based discretization.•Mesh refinement study is performed to ensure the grid converged solution is obtained.•Good agreement with field measurements is achieved at various locations.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2020.113182</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Atmospheric models ; CFD ; Complex terrain ; Computational fluid dynamics ; Computer simulation ; Discretization ; FEM ; Finite element method ; IGA ; Mathematical analysis ; Numerical methods ; NURBS ; Terrain ; Three dimensional flow ; VMS</subject><ispartof>Computer methods in applied mechanics and engineering, 2020-08, Vol.368, p.113182, Article 113182</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Aug 15, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-ccf5019d049f761f3b0c0ae096836dcdcc59b43a82053879b8c6d21e4fc69d513</citedby><cites>FETCH-LOGICAL-c434t-ccf5019d049f761f3b0c0ae096836dcdcc59b43a82053879b8c6d21e4fc69d513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0045782520303674$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Ravensbergen, M.</creatorcontrib><creatorcontrib>Helgedagsrud, T.A.</creatorcontrib><creatorcontrib>Bazilevs, Y.</creatorcontrib><creatorcontrib>Korobenko, A.</creatorcontrib><title>A variational multiscale framework for atmospheric turbulent flows over complex environmental terrains</title><title>Computer methods in applied mechanics and engineering</title><description>A residual-based variational multi-scale (VMS) modeling framework is applied to simulate atmospheric flow over complex environmental terrains. The VMS framework is verified and validated using two test cases using linear finite element (FEM) and quadratic non-uniform rational B-spline (NURBS) discretizations. First, the flow over the 3D, axisymmetric Gaussian hill (normally distributed surface) is used to compare the results with FEM and NURBS discretization. Next, the actual terrain of the Bolund hill is used to demonstrate the efficacy of the framework. Good agreement with published data, coming from simulations and field measurements, is achieved, with the NURBS discretization showing much better per-degree-of-freedom accuracy compared with linear FEM. The paper includes a comprehensive review of experimental and numerical methods, and the corresponding challenges, for complex-terrain flows, which provides a proper context for the developments presented in this work.
•VMS framework is applied to simulate atmospheric flow over complex environmental terrains.•FEM and NURBS discretization techniques are adopted to simulate the flow over the Gaussian hill, and Bolund hill is modeled using NURBS-based discretization.•Mesh refinement study is performed to ensure the grid converged solution is obtained.•Good agreement with field measurements is achieved at various locations.</description><subject>Atmospheric models</subject><subject>CFD</subject><subject>Complex terrain</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Discretization</subject><subject>FEM</subject><subject>Finite element method</subject><subject>IGA</subject><subject>Mathematical analysis</subject><subject>Numerical methods</subject><subject>NURBS</subject><subject>Terrain</subject><subject>Three dimensional flow</subject><subject>VMS</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEuXxAewssU7xI0kTsaoQL6kSG1hb7mQsXJK4jJ0Cf4-rsmY2o9HcO5p7GLuSYi6FrG82cxjsXAmVZ6llo47YTDaLtlBSN8dsJkRZFYtGVafsLMaNyNVINWNuyXeWvE0-jLbnw9QnH8H2yB3ZAb8CfXAXiNs0hLh9R_LA00TrqccxcdeHr8jDDolDGLY9fnMcd57COOR1vpeQyPoxXrATZ_uIl3_9nL093L_ePRWrl8fnu-WqgFKXqQBwlZBtJ8rWLWrp9FqAsCjautF1Bx1A1a5LbRslKp3TrRuoOyWxdFC3XSX1Obs-3N1S-JwwJrMJE-Vk0aiyVDoDklVWyYMKKMRI6MyW_GDpx0hh9jjNxmScZo_THHBmz-3Bg_n9nUcyETyOgJ0nhGS64P9x_wI8yH81</recordid><startdate>20200815</startdate><enddate>20200815</enddate><creator>Ravensbergen, M.</creator><creator>Helgedagsrud, T.A.</creator><creator>Bazilevs, Y.</creator><creator>Korobenko, A.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20200815</creationdate><title>A variational multiscale framework for atmospheric turbulent flows over complex environmental terrains</title><author>Ravensbergen, M. ; Helgedagsrud, T.A. ; Bazilevs, Y. ; Korobenko, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-ccf5019d049f761f3b0c0ae096836dcdcc59b43a82053879b8c6d21e4fc69d513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Atmospheric models</topic><topic>CFD</topic><topic>Complex terrain</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Discretization</topic><topic>FEM</topic><topic>Finite element method</topic><topic>IGA</topic><topic>Mathematical analysis</topic><topic>Numerical methods</topic><topic>NURBS</topic><topic>Terrain</topic><topic>Three dimensional flow</topic><topic>VMS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ravensbergen, M.</creatorcontrib><creatorcontrib>Helgedagsrud, T.A.</creatorcontrib><creatorcontrib>Bazilevs, Y.</creatorcontrib><creatorcontrib>Korobenko, A.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ravensbergen, M.</au><au>Helgedagsrud, T.A.</au><au>Bazilevs, Y.</au><au>Korobenko, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A variational multiscale framework for atmospheric turbulent flows over complex environmental terrains</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2020-08-15</date><risdate>2020</risdate><volume>368</volume><spage>113182</spage><pages>113182-</pages><artnum>113182</artnum><issn>0045-7825</issn><eissn>1879-2138</eissn><abstract>A residual-based variational multi-scale (VMS) modeling framework is applied to simulate atmospheric flow over complex environmental terrains. The VMS framework is verified and validated using two test cases using linear finite element (FEM) and quadratic non-uniform rational B-spline (NURBS) discretizations. First, the flow over the 3D, axisymmetric Gaussian hill (normally distributed surface) is used to compare the results with FEM and NURBS discretization. Next, the actual terrain of the Bolund hill is used to demonstrate the efficacy of the framework. Good agreement with published data, coming from simulations and field measurements, is achieved, with the NURBS discretization showing much better per-degree-of-freedom accuracy compared with linear FEM. The paper includes a comprehensive review of experimental and numerical methods, and the corresponding challenges, for complex-terrain flows, which provides a proper context for the developments presented in this work.
•VMS framework is applied to simulate atmospheric flow over complex environmental terrains.•FEM and NURBS discretization techniques are adopted to simulate the flow over the Gaussian hill, and Bolund hill is modeled using NURBS-based discretization.•Mesh refinement study is performed to ensure the grid converged solution is obtained.•Good agreement with field measurements is achieved at various locations.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2020.113182</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7825 |
ispartof | Computer methods in applied mechanics and engineering, 2020-08, Vol.368, p.113182, Article 113182 |
issn | 0045-7825 1879-2138 |
language | eng |
recordid | cdi_proquest_journals_2442320215 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Atmospheric models CFD Complex terrain Computational fluid dynamics Computer simulation Discretization FEM Finite element method IGA Mathematical analysis Numerical methods NURBS Terrain Three dimensional flow VMS |
title | A variational multiscale framework for atmospheric turbulent flows over complex environmental terrains |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T16%3A56%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20variational%20multiscale%20framework%20for%20atmospheric%20turbulent%20flows%20over%20complex%20environmental%20terrains&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Ravensbergen,%20M.&rft.date=2020-08-15&rft.volume=368&rft.spage=113182&rft.pages=113182-&rft.artnum=113182&rft.issn=0045-7825&rft.eissn=1879-2138&rft_id=info:doi/10.1016/j.cma.2020.113182&rft_dat=%3Cproquest_cross%3E2442320215%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2442320215&rft_id=info:pmid/&rft_els_id=S0045782520303674&rfr_iscdi=true |