Hydroponic horticulture using residual waters from Oreochromis niloticus aquaculture with biofloc technology in photoautotrophic conditions with Chlorella microalgae

Protein‐dependent aquaculture generates large amounts of nutrient‐rich residuals; a feasible way to develop sustainable production systems is to integrate Decoupled Aquaponic Systems (DAPS) with residual water bioprocesses, to combine Photoautotrophic Biofloc Technology (P‐BFT) aquaculture and hydro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Aquaculture research 2020-10, Vol.51 (10), p.4340-4360
Hauptverfasser: Fimbres‐Acedo, Yenitze E., Servín‐Villegas, Rosalía, Garza‐Torres, Rodolfo, Endo, Masato, Fitzsimmons, Kevin M., Emerenciano, Maurício G.C., Magallón‐Servín, Paola, López‐Vela, Melissa, Magallón‐Barajas, Francisco J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4360
container_issue 10
container_start_page 4340
container_title Aquaculture research
container_volume 51
creator Fimbres‐Acedo, Yenitze E.
Servín‐Villegas, Rosalía
Garza‐Torres, Rodolfo
Endo, Masato
Fitzsimmons, Kevin M.
Emerenciano, Maurício G.C.
Magallón‐Servín, Paola
López‐Vela, Melissa
Magallón‐Barajas, Francisco J.
description Protein‐dependent aquaculture generates large amounts of nutrient‐rich residuals; a feasible way to develop sustainable production systems is to integrate Decoupled Aquaponic Systems (DAPS) with residual water bioprocesses, to combine Photoautotrophic Biofloc Technology (P‐BFT) aquaculture and hydroponic horticulture. This study describes the characteristics of residual water from Oreochromis niloticus aquaculture performed with P‐BFT inoculated with Chlorella microalgae, reared during the nursery (180 fish m3) and grow‐out (55 fish m3) phases. The experiment included five treatments: photoautotrophic BFT inoculated with Chlorella sp. (M), C. sorokiniana 2714 (CV), and C. sorokiniana 2805 (CS), and chemoautotrophic (Q) and heterotrophic (H) as controls. Elemental characteristics in liquid and solid residual fractions (15 macro‐ and micronutrients) were compared among treatments and against Hoagland & Arnon solution with hydroponics and used in Nutrient Film Technique (NFT) hydroponic horticulture including five plant species: lettuce (Lactuca sativa), pak‐choi (Brassica rapa subsp. chinensis), rocket (Eruca sativa), spinach (Spinacia oleracea) and basil (Ocimum basilicum). The physicochemical parameters were ideal for O. niloticus and plants. The relationship between N:P was ideal until weeks 16–22 in the photoautotrophic treatments, compared with hydroponic solutions. Micronutrient content was greater in the solid than a liquid fraction. The best BFT effluent regarding fish and plant growth was photoautotrophic treatments. Oreochromis niloticus BFT aquaculture in photoautotrophic mode using microalgae Chlorella inoculations provided residual water beneficial to hydroponic horticulture in DAPS located in coastal arid zones where freshwater is scarce, improving aquaculture performance and reusing water and nutrients.
doi_str_mv 10.1111/are.14779
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2442171653</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2442171653</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2979-1b1c18093b0722a6574208a58122bf006e054d711b54a9c2914e24d7056d29f63</originalsourceid><addsrcrecordid>eNp1kdFKwzAUhosoOKcXvkHAKy-65aRNu16OoU4YDETBu5Km6ZqR9WxJytgD-Z5mVi_NTQ7h-_If-KPoHugEwpkKqyaQ5nlxEY0gyXjMgBaX55nzmPP88zq6cW5LKaQ0gVH0tTzVFvfYaUlatF7L3vjeKtI73W2IVU7XvTDkKLyyjjQWd2RtFco2TNqRThs8S46IQy_-5KP2Lak0NgYl8Uq2HRrcnIjuyL5Fj6L36ENsG1IldrX2Gjs3aIvWoFXGCLLT0qIwG6Fuo6tGGKfufu9x9PH89L5Yxqv1y-tivoolK_IihgokzGiRVDRnTGQ8TxmdCT4DxqqG0kxRntY5QMVTUQQHUsXCA-VZzYomS8bRw_Dv3uKhV86XW-xtFyJLlqYMcsh4EqjHgQrrOWdVU-6t3gl7KoGW5xbK0EL500JgpwN71Ead_gfL-dvTYHwDdViNng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2442171653</pqid></control><display><type>article</type><title>Hydroponic horticulture using residual waters from Oreochromis niloticus aquaculture with biofloc technology in photoautotrophic conditions with Chlorella microalgae</title><source>Access via Wiley Online Library</source><creator>Fimbres‐Acedo, Yenitze E. ; Servín‐Villegas, Rosalía ; Garza‐Torres, Rodolfo ; Endo, Masato ; Fitzsimmons, Kevin M. ; Emerenciano, Maurício G.C. ; Magallón‐Servín, Paola ; López‐Vela, Melissa ; Magallón‐Barajas, Francisco J.</creator><creatorcontrib>Fimbres‐Acedo, Yenitze E. ; Servín‐Villegas, Rosalía ; Garza‐Torres, Rodolfo ; Endo, Masato ; Fitzsimmons, Kevin M. ; Emerenciano, Maurício G.C. ; Magallón‐Servín, Paola ; López‐Vela, Melissa ; Magallón‐Barajas, Francisco J.</creatorcontrib><description>Protein‐dependent aquaculture generates large amounts of nutrient‐rich residuals; a feasible way to develop sustainable production systems is to integrate Decoupled Aquaponic Systems (DAPS) with residual water bioprocesses, to combine Photoautotrophic Biofloc Technology (P‐BFT) aquaculture and hydroponic horticulture. This study describes the characteristics of residual water from Oreochromis niloticus aquaculture performed with P‐BFT inoculated with Chlorella microalgae, reared during the nursery (180 fish m3) and grow‐out (55 fish m3) phases. The experiment included five treatments: photoautotrophic BFT inoculated with Chlorella sp. (M), C. sorokiniana 2714 (CV), and C. sorokiniana 2805 (CS), and chemoautotrophic (Q) and heterotrophic (H) as controls. Elemental characteristics in liquid and solid residual fractions (15 macro‐ and micronutrients) were compared among treatments and against Hoagland &amp; Arnon solution with hydroponics and used in Nutrient Film Technique (NFT) hydroponic horticulture including five plant species: lettuce (Lactuca sativa), pak‐choi (Brassica rapa subsp. chinensis), rocket (Eruca sativa), spinach (Spinacia oleracea) and basil (Ocimum basilicum). The physicochemical parameters were ideal for O. niloticus and plants. The relationship between N:P was ideal until weeks 16–22 in the photoautotrophic treatments, compared with hydroponic solutions. Micronutrient content was greater in the solid than a liquid fraction. The best BFT effluent regarding fish and plant growth was photoautotrophic treatments. Oreochromis niloticus BFT aquaculture in photoautotrophic mode using microalgae Chlorella inoculations provided residual water beneficial to hydroponic horticulture in DAPS located in coastal arid zones where freshwater is scarce, improving aquaculture performance and reusing water and nutrients.</description><identifier>ISSN: 1355-557X</identifier><identifier>EISSN: 1365-2109</identifier><identifier>DOI: 10.1111/are.14779</identifier><language>eng</language><publisher>Oxford: Hindawi Limited</publisher><subject>Algae ; Aquaculture ; aquaponic system ; Aridity ; Biofloc technology ; Brassica ; Brassica rapa chinensis ; Chlorella ; Chlorella sorokiniana ; Eruca sativa ; Fish ; Freshwater ; Horticulture ; Hydroponics ; Inland water environment ; Inoculation ; Lactuca sativa ; Marine fishes ; Microalgae ; Micronutrients ; Mineral nutrients ; Nursery grounds ; Nutrients ; Ocimum basilicum ; Oreochromis ; Oreochromis niloticus ; Physicochemical processes ; Phytoplankton ; Plant growth ; Spinach ; Spinacia oleracea ; Technology</subject><ispartof>Aquaculture research, 2020-10, Vol.51 (10), p.4340-4360</ispartof><rights>2020 John Wiley &amp; Sons Ltd</rights><rights>Copyright © 2020 John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2979-1b1c18093b0722a6574208a58122bf006e054d711b54a9c2914e24d7056d29f63</citedby><cites>FETCH-LOGICAL-c2979-1b1c18093b0722a6574208a58122bf006e054d711b54a9c2914e24d7056d29f63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fare.14779$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fare.14779$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Fimbres‐Acedo, Yenitze E.</creatorcontrib><creatorcontrib>Servín‐Villegas, Rosalía</creatorcontrib><creatorcontrib>Garza‐Torres, Rodolfo</creatorcontrib><creatorcontrib>Endo, Masato</creatorcontrib><creatorcontrib>Fitzsimmons, Kevin M.</creatorcontrib><creatorcontrib>Emerenciano, Maurício G.C.</creatorcontrib><creatorcontrib>Magallón‐Servín, Paola</creatorcontrib><creatorcontrib>López‐Vela, Melissa</creatorcontrib><creatorcontrib>Magallón‐Barajas, Francisco J.</creatorcontrib><title>Hydroponic horticulture using residual waters from Oreochromis niloticus aquaculture with biofloc technology in photoautotrophic conditions with Chlorella microalgae</title><title>Aquaculture research</title><description>Protein‐dependent aquaculture generates large amounts of nutrient‐rich residuals; a feasible way to develop sustainable production systems is to integrate Decoupled Aquaponic Systems (DAPS) with residual water bioprocesses, to combine Photoautotrophic Biofloc Technology (P‐BFT) aquaculture and hydroponic horticulture. This study describes the characteristics of residual water from Oreochromis niloticus aquaculture performed with P‐BFT inoculated with Chlorella microalgae, reared during the nursery (180 fish m3) and grow‐out (55 fish m3) phases. The experiment included five treatments: photoautotrophic BFT inoculated with Chlorella sp. (M), C. sorokiniana 2714 (CV), and C. sorokiniana 2805 (CS), and chemoautotrophic (Q) and heterotrophic (H) as controls. Elemental characteristics in liquid and solid residual fractions (15 macro‐ and micronutrients) were compared among treatments and against Hoagland &amp; Arnon solution with hydroponics and used in Nutrient Film Technique (NFT) hydroponic horticulture including five plant species: lettuce (Lactuca sativa), pak‐choi (Brassica rapa subsp. chinensis), rocket (Eruca sativa), spinach (Spinacia oleracea) and basil (Ocimum basilicum). The physicochemical parameters were ideal for O. niloticus and plants. The relationship between N:P was ideal until weeks 16–22 in the photoautotrophic treatments, compared with hydroponic solutions. Micronutrient content was greater in the solid than a liquid fraction. The best BFT effluent regarding fish and plant growth was photoautotrophic treatments. Oreochromis niloticus BFT aquaculture in photoautotrophic mode using microalgae Chlorella inoculations provided residual water beneficial to hydroponic horticulture in DAPS located in coastal arid zones where freshwater is scarce, improving aquaculture performance and reusing water and nutrients.</description><subject>Algae</subject><subject>Aquaculture</subject><subject>aquaponic system</subject><subject>Aridity</subject><subject>Biofloc technology</subject><subject>Brassica</subject><subject>Brassica rapa chinensis</subject><subject>Chlorella</subject><subject>Chlorella sorokiniana</subject><subject>Eruca sativa</subject><subject>Fish</subject><subject>Freshwater</subject><subject>Horticulture</subject><subject>Hydroponics</subject><subject>Inland water environment</subject><subject>Inoculation</subject><subject>Lactuca sativa</subject><subject>Marine fishes</subject><subject>Microalgae</subject><subject>Micronutrients</subject><subject>Mineral nutrients</subject><subject>Nursery grounds</subject><subject>Nutrients</subject><subject>Ocimum basilicum</subject><subject>Oreochromis</subject><subject>Oreochromis niloticus</subject><subject>Physicochemical processes</subject><subject>Phytoplankton</subject><subject>Plant growth</subject><subject>Spinach</subject><subject>Spinacia oleracea</subject><subject>Technology</subject><issn>1355-557X</issn><issn>1365-2109</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kdFKwzAUhosoOKcXvkHAKy-65aRNu16OoU4YDETBu5Km6ZqR9WxJytgD-Z5mVi_NTQ7h-_If-KPoHugEwpkKqyaQ5nlxEY0gyXjMgBaX55nzmPP88zq6cW5LKaQ0gVH0tTzVFvfYaUlatF7L3vjeKtI73W2IVU7XvTDkKLyyjjQWd2RtFco2TNqRThs8S46IQy_-5KP2Lak0NgYl8Uq2HRrcnIjuyL5Fj6L36ENsG1IldrX2Gjs3aIvWoFXGCLLT0qIwG6Fuo6tGGKfufu9x9PH89L5Yxqv1y-tivoolK_IihgokzGiRVDRnTGQ8TxmdCT4DxqqG0kxRntY5QMVTUQQHUsXCA-VZzYomS8bRw_Dv3uKhV86XW-xtFyJLlqYMcsh4EqjHgQrrOWdVU-6t3gl7KoGW5xbK0EL500JgpwN71Ead_gfL-dvTYHwDdViNng</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>Fimbres‐Acedo, Yenitze E.</creator><creator>Servín‐Villegas, Rosalía</creator><creator>Garza‐Torres, Rodolfo</creator><creator>Endo, Masato</creator><creator>Fitzsimmons, Kevin M.</creator><creator>Emerenciano, Maurício G.C.</creator><creator>Magallón‐Servín, Paola</creator><creator>López‐Vela, Melissa</creator><creator>Magallón‐Barajas, Francisco J.</creator><general>Hindawi Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>H98</scope><scope>H99</scope><scope>L.F</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>202010</creationdate><title>Hydroponic horticulture using residual waters from Oreochromis niloticus aquaculture with biofloc technology in photoautotrophic conditions with Chlorella microalgae</title><author>Fimbres‐Acedo, Yenitze E. ; Servín‐Villegas, Rosalía ; Garza‐Torres, Rodolfo ; Endo, Masato ; Fitzsimmons, Kevin M. ; Emerenciano, Maurício G.C. ; Magallón‐Servín, Paola ; López‐Vela, Melissa ; Magallón‐Barajas, Francisco J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2979-1b1c18093b0722a6574208a58122bf006e054d711b54a9c2914e24d7056d29f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algae</topic><topic>Aquaculture</topic><topic>aquaponic system</topic><topic>Aridity</topic><topic>Biofloc technology</topic><topic>Brassica</topic><topic>Brassica rapa chinensis</topic><topic>Chlorella</topic><topic>Chlorella sorokiniana</topic><topic>Eruca sativa</topic><topic>Fish</topic><topic>Freshwater</topic><topic>Horticulture</topic><topic>Hydroponics</topic><topic>Inland water environment</topic><topic>Inoculation</topic><topic>Lactuca sativa</topic><topic>Marine fishes</topic><topic>Microalgae</topic><topic>Micronutrients</topic><topic>Mineral nutrients</topic><topic>Nursery grounds</topic><topic>Nutrients</topic><topic>Ocimum basilicum</topic><topic>Oreochromis</topic><topic>Oreochromis niloticus</topic><topic>Physicochemical processes</topic><topic>Phytoplankton</topic><topic>Plant growth</topic><topic>Spinach</topic><topic>Spinacia oleracea</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fimbres‐Acedo, Yenitze E.</creatorcontrib><creatorcontrib>Servín‐Villegas, Rosalía</creatorcontrib><creatorcontrib>Garza‐Torres, Rodolfo</creatorcontrib><creatorcontrib>Endo, Masato</creatorcontrib><creatorcontrib>Fitzsimmons, Kevin M.</creatorcontrib><creatorcontrib>Emerenciano, Maurício G.C.</creatorcontrib><creatorcontrib>Magallón‐Servín, Paola</creatorcontrib><creatorcontrib>López‐Vela, Melissa</creatorcontrib><creatorcontrib>Magallón‐Barajas, Francisco J.</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Aquaculture Abstracts</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Aquaculture research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fimbres‐Acedo, Yenitze E.</au><au>Servín‐Villegas, Rosalía</au><au>Garza‐Torres, Rodolfo</au><au>Endo, Masato</au><au>Fitzsimmons, Kevin M.</au><au>Emerenciano, Maurício G.C.</au><au>Magallón‐Servín, Paola</au><au>López‐Vela, Melissa</au><au>Magallón‐Barajas, Francisco J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydroponic horticulture using residual waters from Oreochromis niloticus aquaculture with biofloc technology in photoautotrophic conditions with Chlorella microalgae</atitle><jtitle>Aquaculture research</jtitle><date>2020-10</date><risdate>2020</risdate><volume>51</volume><issue>10</issue><spage>4340</spage><epage>4360</epage><pages>4340-4360</pages><issn>1355-557X</issn><eissn>1365-2109</eissn><abstract>Protein‐dependent aquaculture generates large amounts of nutrient‐rich residuals; a feasible way to develop sustainable production systems is to integrate Decoupled Aquaponic Systems (DAPS) with residual water bioprocesses, to combine Photoautotrophic Biofloc Technology (P‐BFT) aquaculture and hydroponic horticulture. This study describes the characteristics of residual water from Oreochromis niloticus aquaculture performed with P‐BFT inoculated with Chlorella microalgae, reared during the nursery (180 fish m3) and grow‐out (55 fish m3) phases. The experiment included five treatments: photoautotrophic BFT inoculated with Chlorella sp. (M), C. sorokiniana 2714 (CV), and C. sorokiniana 2805 (CS), and chemoautotrophic (Q) and heterotrophic (H) as controls. Elemental characteristics in liquid and solid residual fractions (15 macro‐ and micronutrients) were compared among treatments and against Hoagland &amp; Arnon solution with hydroponics and used in Nutrient Film Technique (NFT) hydroponic horticulture including five plant species: lettuce (Lactuca sativa), pak‐choi (Brassica rapa subsp. chinensis), rocket (Eruca sativa), spinach (Spinacia oleracea) and basil (Ocimum basilicum). The physicochemical parameters were ideal for O. niloticus and plants. The relationship between N:P was ideal until weeks 16–22 in the photoautotrophic treatments, compared with hydroponic solutions. Micronutrient content was greater in the solid than a liquid fraction. The best BFT effluent regarding fish and plant growth was photoautotrophic treatments. Oreochromis niloticus BFT aquaculture in photoautotrophic mode using microalgae Chlorella inoculations provided residual water beneficial to hydroponic horticulture in DAPS located in coastal arid zones where freshwater is scarce, improving aquaculture performance and reusing water and nutrients.</abstract><cop>Oxford</cop><pub>Hindawi Limited</pub><doi>10.1111/are.14779</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1355-557X
ispartof Aquaculture research, 2020-10, Vol.51 (10), p.4340-4360
issn 1355-557X
1365-2109
language eng
recordid cdi_proquest_journals_2442171653
source Access via Wiley Online Library
subjects Algae
Aquaculture
aquaponic system
Aridity
Biofloc technology
Brassica
Brassica rapa chinensis
Chlorella
Chlorella sorokiniana
Eruca sativa
Fish
Freshwater
Horticulture
Hydroponics
Inland water environment
Inoculation
Lactuca sativa
Marine fishes
Microalgae
Micronutrients
Mineral nutrients
Nursery grounds
Nutrients
Ocimum basilicum
Oreochromis
Oreochromis niloticus
Physicochemical processes
Phytoplankton
Plant growth
Spinach
Spinacia oleracea
Technology
title Hydroponic horticulture using residual waters from Oreochromis niloticus aquaculture with biofloc technology in photoautotrophic conditions with Chlorella microalgae
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T12%3A21%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydroponic%20horticulture%20using%20residual%20waters%20from%20Oreochromis%20niloticus%20aquaculture%20with%20biofloc%20technology%20in%20photoautotrophic%20conditions%20with%20Chlorella%20microalgae&rft.jtitle=Aquaculture%20research&rft.au=Fimbres%E2%80%90Acedo,%20Yenitze%20E.&rft.date=2020-10&rft.volume=51&rft.issue=10&rft.spage=4340&rft.epage=4360&rft.pages=4340-4360&rft.issn=1355-557X&rft.eissn=1365-2109&rft_id=info:doi/10.1111/are.14779&rft_dat=%3Cproquest_cross%3E2442171653%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2442171653&rft_id=info:pmid/&rfr_iscdi=true