Hydroponic horticulture using residual waters from Oreochromis niloticus aquaculture with biofloc technology in photoautotrophic conditions with Chlorella microalgae
Protein‐dependent aquaculture generates large amounts of nutrient‐rich residuals; a feasible way to develop sustainable production systems is to integrate Decoupled Aquaponic Systems (DAPS) with residual water bioprocesses, to combine Photoautotrophic Biofloc Technology (P‐BFT) aquaculture and hydro...
Gespeichert in:
Veröffentlicht in: | Aquaculture research 2020-10, Vol.51 (10), p.4340-4360 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4360 |
---|---|
container_issue | 10 |
container_start_page | 4340 |
container_title | Aquaculture research |
container_volume | 51 |
creator | Fimbres‐Acedo, Yenitze E. Servín‐Villegas, Rosalía Garza‐Torres, Rodolfo Endo, Masato Fitzsimmons, Kevin M. Emerenciano, Maurício G.C. Magallón‐Servín, Paola López‐Vela, Melissa Magallón‐Barajas, Francisco J. |
description | Protein‐dependent aquaculture generates large amounts of nutrient‐rich residuals; a feasible way to develop sustainable production systems is to integrate Decoupled Aquaponic Systems (DAPS) with residual water bioprocesses, to combine Photoautotrophic Biofloc Technology (P‐BFT) aquaculture and hydroponic horticulture. This study describes the characteristics of residual water from Oreochromis niloticus aquaculture performed with P‐BFT inoculated with Chlorella microalgae, reared during the nursery (180 fish m3) and grow‐out (55 fish m3) phases. The experiment included five treatments: photoautotrophic BFT inoculated with Chlorella sp. (M), C. sorokiniana 2714 (CV), and C. sorokiniana 2805 (CS), and chemoautotrophic (Q) and heterotrophic (H) as controls. Elemental characteristics in liquid and solid residual fractions (15 macro‐ and micronutrients) were compared among treatments and against Hoagland & Arnon solution with hydroponics and used in Nutrient Film Technique (NFT) hydroponic horticulture including five plant species: lettuce (Lactuca sativa), pak‐choi (Brassica rapa subsp. chinensis), rocket (Eruca sativa), spinach (Spinacia oleracea) and basil (Ocimum basilicum). The physicochemical parameters were ideal for O. niloticus and plants. The relationship between N:P was ideal until weeks 16–22 in the photoautotrophic treatments, compared with hydroponic solutions. Micronutrient content was greater in the solid than a liquid fraction. The best BFT effluent regarding fish and plant growth was photoautotrophic treatments. Oreochromis niloticus BFT aquaculture in photoautotrophic mode using microalgae Chlorella inoculations provided residual water beneficial to hydroponic horticulture in DAPS located in coastal arid zones where freshwater is scarce, improving aquaculture performance and reusing water and nutrients. |
doi_str_mv | 10.1111/are.14779 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2442171653</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2442171653</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2979-1b1c18093b0722a6574208a58122bf006e054d711b54a9c2914e24d7056d29f63</originalsourceid><addsrcrecordid>eNp1kdFKwzAUhosoOKcXvkHAKy-65aRNu16OoU4YDETBu5Km6ZqR9WxJytgD-Z5mVi_NTQ7h-_If-KPoHugEwpkKqyaQ5nlxEY0gyXjMgBaX55nzmPP88zq6cW5LKaQ0gVH0tTzVFvfYaUlatF7L3vjeKtI73W2IVU7XvTDkKLyyjjQWd2RtFco2TNqRThs8S46IQy_-5KP2Lak0NgYl8Uq2HRrcnIjuyL5Fj6L36ENsG1IldrX2Gjs3aIvWoFXGCLLT0qIwG6Fuo6tGGKfufu9x9PH89L5Yxqv1y-tivoolK_IihgokzGiRVDRnTGQ8TxmdCT4DxqqG0kxRntY5QMVTUQQHUsXCA-VZzYomS8bRw_Dv3uKhV86XW-xtFyJLlqYMcsh4EqjHgQrrOWdVU-6t3gl7KoGW5xbK0EL500JgpwN71Ead_gfL-dvTYHwDdViNng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2442171653</pqid></control><display><type>article</type><title>Hydroponic horticulture using residual waters from Oreochromis niloticus aquaculture with biofloc technology in photoautotrophic conditions with Chlorella microalgae</title><source>Access via Wiley Online Library</source><creator>Fimbres‐Acedo, Yenitze E. ; Servín‐Villegas, Rosalía ; Garza‐Torres, Rodolfo ; Endo, Masato ; Fitzsimmons, Kevin M. ; Emerenciano, Maurício G.C. ; Magallón‐Servín, Paola ; López‐Vela, Melissa ; Magallón‐Barajas, Francisco J.</creator><creatorcontrib>Fimbres‐Acedo, Yenitze E. ; Servín‐Villegas, Rosalía ; Garza‐Torres, Rodolfo ; Endo, Masato ; Fitzsimmons, Kevin M. ; Emerenciano, Maurício G.C. ; Magallón‐Servín, Paola ; López‐Vela, Melissa ; Magallón‐Barajas, Francisco J.</creatorcontrib><description>Protein‐dependent aquaculture generates large amounts of nutrient‐rich residuals; a feasible way to develop sustainable production systems is to integrate Decoupled Aquaponic Systems (DAPS) with residual water bioprocesses, to combine Photoautotrophic Biofloc Technology (P‐BFT) aquaculture and hydroponic horticulture. This study describes the characteristics of residual water from Oreochromis niloticus aquaculture performed with P‐BFT inoculated with Chlorella microalgae, reared during the nursery (180 fish m3) and grow‐out (55 fish m3) phases. The experiment included five treatments: photoautotrophic BFT inoculated with Chlorella sp. (M), C. sorokiniana 2714 (CV), and C. sorokiniana 2805 (CS), and chemoautotrophic (Q) and heterotrophic (H) as controls. Elemental characteristics in liquid and solid residual fractions (15 macro‐ and micronutrients) were compared among treatments and against Hoagland & Arnon solution with hydroponics and used in Nutrient Film Technique (NFT) hydroponic horticulture including five plant species: lettuce (Lactuca sativa), pak‐choi (Brassica rapa subsp. chinensis), rocket (Eruca sativa), spinach (Spinacia oleracea) and basil (Ocimum basilicum). The physicochemical parameters were ideal for O. niloticus and plants. The relationship between N:P was ideal until weeks 16–22 in the photoautotrophic treatments, compared with hydroponic solutions. Micronutrient content was greater in the solid than a liquid fraction. The best BFT effluent regarding fish and plant growth was photoautotrophic treatments. Oreochromis niloticus BFT aquaculture in photoautotrophic mode using microalgae Chlorella inoculations provided residual water beneficial to hydroponic horticulture in DAPS located in coastal arid zones where freshwater is scarce, improving aquaculture performance and reusing water and nutrients.</description><identifier>ISSN: 1355-557X</identifier><identifier>EISSN: 1365-2109</identifier><identifier>DOI: 10.1111/are.14779</identifier><language>eng</language><publisher>Oxford: Hindawi Limited</publisher><subject>Algae ; Aquaculture ; aquaponic system ; Aridity ; Biofloc technology ; Brassica ; Brassica rapa chinensis ; Chlorella ; Chlorella sorokiniana ; Eruca sativa ; Fish ; Freshwater ; Horticulture ; Hydroponics ; Inland water environment ; Inoculation ; Lactuca sativa ; Marine fishes ; Microalgae ; Micronutrients ; Mineral nutrients ; Nursery grounds ; Nutrients ; Ocimum basilicum ; Oreochromis ; Oreochromis niloticus ; Physicochemical processes ; Phytoplankton ; Plant growth ; Spinach ; Spinacia oleracea ; Technology</subject><ispartof>Aquaculture research, 2020-10, Vol.51 (10), p.4340-4360</ispartof><rights>2020 John Wiley & Sons Ltd</rights><rights>Copyright © 2020 John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2979-1b1c18093b0722a6574208a58122bf006e054d711b54a9c2914e24d7056d29f63</citedby><cites>FETCH-LOGICAL-c2979-1b1c18093b0722a6574208a58122bf006e054d711b54a9c2914e24d7056d29f63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fare.14779$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fare.14779$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Fimbres‐Acedo, Yenitze E.</creatorcontrib><creatorcontrib>Servín‐Villegas, Rosalía</creatorcontrib><creatorcontrib>Garza‐Torres, Rodolfo</creatorcontrib><creatorcontrib>Endo, Masato</creatorcontrib><creatorcontrib>Fitzsimmons, Kevin M.</creatorcontrib><creatorcontrib>Emerenciano, Maurício G.C.</creatorcontrib><creatorcontrib>Magallón‐Servín, Paola</creatorcontrib><creatorcontrib>López‐Vela, Melissa</creatorcontrib><creatorcontrib>Magallón‐Barajas, Francisco J.</creatorcontrib><title>Hydroponic horticulture using residual waters from Oreochromis niloticus aquaculture with biofloc technology in photoautotrophic conditions with Chlorella microalgae</title><title>Aquaculture research</title><description>Protein‐dependent aquaculture generates large amounts of nutrient‐rich residuals; a feasible way to develop sustainable production systems is to integrate Decoupled Aquaponic Systems (DAPS) with residual water bioprocesses, to combine Photoautotrophic Biofloc Technology (P‐BFT) aquaculture and hydroponic horticulture. This study describes the characteristics of residual water from Oreochromis niloticus aquaculture performed with P‐BFT inoculated with Chlorella microalgae, reared during the nursery (180 fish m3) and grow‐out (55 fish m3) phases. The experiment included five treatments: photoautotrophic BFT inoculated with Chlorella sp. (M), C. sorokiniana 2714 (CV), and C. sorokiniana 2805 (CS), and chemoautotrophic (Q) and heterotrophic (H) as controls. Elemental characteristics in liquid and solid residual fractions (15 macro‐ and micronutrients) were compared among treatments and against Hoagland & Arnon solution with hydroponics and used in Nutrient Film Technique (NFT) hydroponic horticulture including five plant species: lettuce (Lactuca sativa), pak‐choi (Brassica rapa subsp. chinensis), rocket (Eruca sativa), spinach (Spinacia oleracea) and basil (Ocimum basilicum). The physicochemical parameters were ideal for O. niloticus and plants. The relationship between N:P was ideal until weeks 16–22 in the photoautotrophic treatments, compared with hydroponic solutions. Micronutrient content was greater in the solid than a liquid fraction. The best BFT effluent regarding fish and plant growth was photoautotrophic treatments. Oreochromis niloticus BFT aquaculture in photoautotrophic mode using microalgae Chlorella inoculations provided residual water beneficial to hydroponic horticulture in DAPS located in coastal arid zones where freshwater is scarce, improving aquaculture performance and reusing water and nutrients.</description><subject>Algae</subject><subject>Aquaculture</subject><subject>aquaponic system</subject><subject>Aridity</subject><subject>Biofloc technology</subject><subject>Brassica</subject><subject>Brassica rapa chinensis</subject><subject>Chlorella</subject><subject>Chlorella sorokiniana</subject><subject>Eruca sativa</subject><subject>Fish</subject><subject>Freshwater</subject><subject>Horticulture</subject><subject>Hydroponics</subject><subject>Inland water environment</subject><subject>Inoculation</subject><subject>Lactuca sativa</subject><subject>Marine fishes</subject><subject>Microalgae</subject><subject>Micronutrients</subject><subject>Mineral nutrients</subject><subject>Nursery grounds</subject><subject>Nutrients</subject><subject>Ocimum basilicum</subject><subject>Oreochromis</subject><subject>Oreochromis niloticus</subject><subject>Physicochemical processes</subject><subject>Phytoplankton</subject><subject>Plant growth</subject><subject>Spinach</subject><subject>Spinacia oleracea</subject><subject>Technology</subject><issn>1355-557X</issn><issn>1365-2109</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kdFKwzAUhosoOKcXvkHAKy-65aRNu16OoU4YDETBu5Km6ZqR9WxJytgD-Z5mVi_NTQ7h-_If-KPoHugEwpkKqyaQ5nlxEY0gyXjMgBaX55nzmPP88zq6cW5LKaQ0gVH0tTzVFvfYaUlatF7L3vjeKtI73W2IVU7XvTDkKLyyjjQWd2RtFco2TNqRThs8S46IQy_-5KP2Lak0NgYl8Uq2HRrcnIjuyL5Fj6L36ENsG1IldrX2Gjs3aIvWoFXGCLLT0qIwG6Fuo6tGGKfufu9x9PH89L5Yxqv1y-tivoolK_IihgokzGiRVDRnTGQ8TxmdCT4DxqqG0kxRntY5QMVTUQQHUsXCA-VZzYomS8bRw_Dv3uKhV86XW-xtFyJLlqYMcsh4EqjHgQrrOWdVU-6t3gl7KoGW5xbK0EL500JgpwN71Ead_gfL-dvTYHwDdViNng</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>Fimbres‐Acedo, Yenitze E.</creator><creator>Servín‐Villegas, Rosalía</creator><creator>Garza‐Torres, Rodolfo</creator><creator>Endo, Masato</creator><creator>Fitzsimmons, Kevin M.</creator><creator>Emerenciano, Maurício G.C.</creator><creator>Magallón‐Servín, Paola</creator><creator>López‐Vela, Melissa</creator><creator>Magallón‐Barajas, Francisco J.</creator><general>Hindawi Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>H98</scope><scope>H99</scope><scope>L.F</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>202010</creationdate><title>Hydroponic horticulture using residual waters from Oreochromis niloticus aquaculture with biofloc technology in photoautotrophic conditions with Chlorella microalgae</title><author>Fimbres‐Acedo, Yenitze E. ; Servín‐Villegas, Rosalía ; Garza‐Torres, Rodolfo ; Endo, Masato ; Fitzsimmons, Kevin M. ; Emerenciano, Maurício G.C. ; Magallón‐Servín, Paola ; López‐Vela, Melissa ; Magallón‐Barajas, Francisco J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2979-1b1c18093b0722a6574208a58122bf006e054d711b54a9c2914e24d7056d29f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algae</topic><topic>Aquaculture</topic><topic>aquaponic system</topic><topic>Aridity</topic><topic>Biofloc technology</topic><topic>Brassica</topic><topic>Brassica rapa chinensis</topic><topic>Chlorella</topic><topic>Chlorella sorokiniana</topic><topic>Eruca sativa</topic><topic>Fish</topic><topic>Freshwater</topic><topic>Horticulture</topic><topic>Hydroponics</topic><topic>Inland water environment</topic><topic>Inoculation</topic><topic>Lactuca sativa</topic><topic>Marine fishes</topic><topic>Microalgae</topic><topic>Micronutrients</topic><topic>Mineral nutrients</topic><topic>Nursery grounds</topic><topic>Nutrients</topic><topic>Ocimum basilicum</topic><topic>Oreochromis</topic><topic>Oreochromis niloticus</topic><topic>Physicochemical processes</topic><topic>Phytoplankton</topic><topic>Plant growth</topic><topic>Spinach</topic><topic>Spinacia oleracea</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fimbres‐Acedo, Yenitze E.</creatorcontrib><creatorcontrib>Servín‐Villegas, Rosalía</creatorcontrib><creatorcontrib>Garza‐Torres, Rodolfo</creatorcontrib><creatorcontrib>Endo, Masato</creatorcontrib><creatorcontrib>Fitzsimmons, Kevin M.</creatorcontrib><creatorcontrib>Emerenciano, Maurício G.C.</creatorcontrib><creatorcontrib>Magallón‐Servín, Paola</creatorcontrib><creatorcontrib>López‐Vela, Melissa</creatorcontrib><creatorcontrib>Magallón‐Barajas, Francisco J.</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Aquaculture research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fimbres‐Acedo, Yenitze E.</au><au>Servín‐Villegas, Rosalía</au><au>Garza‐Torres, Rodolfo</au><au>Endo, Masato</au><au>Fitzsimmons, Kevin M.</au><au>Emerenciano, Maurício G.C.</au><au>Magallón‐Servín, Paola</au><au>López‐Vela, Melissa</au><au>Magallón‐Barajas, Francisco J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydroponic horticulture using residual waters from Oreochromis niloticus aquaculture with biofloc technology in photoautotrophic conditions with Chlorella microalgae</atitle><jtitle>Aquaculture research</jtitle><date>2020-10</date><risdate>2020</risdate><volume>51</volume><issue>10</issue><spage>4340</spage><epage>4360</epage><pages>4340-4360</pages><issn>1355-557X</issn><eissn>1365-2109</eissn><abstract>Protein‐dependent aquaculture generates large amounts of nutrient‐rich residuals; a feasible way to develop sustainable production systems is to integrate Decoupled Aquaponic Systems (DAPS) with residual water bioprocesses, to combine Photoautotrophic Biofloc Technology (P‐BFT) aquaculture and hydroponic horticulture. This study describes the characteristics of residual water from Oreochromis niloticus aquaculture performed with P‐BFT inoculated with Chlorella microalgae, reared during the nursery (180 fish m3) and grow‐out (55 fish m3) phases. The experiment included five treatments: photoautotrophic BFT inoculated with Chlorella sp. (M), C. sorokiniana 2714 (CV), and C. sorokiniana 2805 (CS), and chemoautotrophic (Q) and heterotrophic (H) as controls. Elemental characteristics in liquid and solid residual fractions (15 macro‐ and micronutrients) were compared among treatments and against Hoagland & Arnon solution with hydroponics and used in Nutrient Film Technique (NFT) hydroponic horticulture including five plant species: lettuce (Lactuca sativa), pak‐choi (Brassica rapa subsp. chinensis), rocket (Eruca sativa), spinach (Spinacia oleracea) and basil (Ocimum basilicum). The physicochemical parameters were ideal for O. niloticus and plants. The relationship between N:P was ideal until weeks 16–22 in the photoautotrophic treatments, compared with hydroponic solutions. Micronutrient content was greater in the solid than a liquid fraction. The best BFT effluent regarding fish and plant growth was photoautotrophic treatments. Oreochromis niloticus BFT aquaculture in photoautotrophic mode using microalgae Chlorella inoculations provided residual water beneficial to hydroponic horticulture in DAPS located in coastal arid zones where freshwater is scarce, improving aquaculture performance and reusing water and nutrients.</abstract><cop>Oxford</cop><pub>Hindawi Limited</pub><doi>10.1111/are.14779</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1355-557X |
ispartof | Aquaculture research, 2020-10, Vol.51 (10), p.4340-4360 |
issn | 1355-557X 1365-2109 |
language | eng |
recordid | cdi_proquest_journals_2442171653 |
source | Access via Wiley Online Library |
subjects | Algae Aquaculture aquaponic system Aridity Biofloc technology Brassica Brassica rapa chinensis Chlorella Chlorella sorokiniana Eruca sativa Fish Freshwater Horticulture Hydroponics Inland water environment Inoculation Lactuca sativa Marine fishes Microalgae Micronutrients Mineral nutrients Nursery grounds Nutrients Ocimum basilicum Oreochromis Oreochromis niloticus Physicochemical processes Phytoplankton Plant growth Spinach Spinacia oleracea Technology |
title | Hydroponic horticulture using residual waters from Oreochromis niloticus aquaculture with biofloc technology in photoautotrophic conditions with Chlorella microalgae |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T12%3A21%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydroponic%20horticulture%20using%20residual%20waters%20from%20Oreochromis%20niloticus%20aquaculture%20with%20biofloc%20technology%20in%20photoautotrophic%20conditions%20with%20Chlorella%20microalgae&rft.jtitle=Aquaculture%20research&rft.au=Fimbres%E2%80%90Acedo,%20Yenitze%20E.&rft.date=2020-10&rft.volume=51&rft.issue=10&rft.spage=4340&rft.epage=4360&rft.pages=4340-4360&rft.issn=1355-557X&rft.eissn=1365-2109&rft_id=info:doi/10.1111/are.14779&rft_dat=%3Cproquest_cross%3E2442171653%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2442171653&rft_id=info:pmid/&rfr_iscdi=true |