Densification, mechanical, and tribological properties of ZrB2‐ZrCx composites produced by reactive hot pressing

ZrB2‐ZrCx composites were produced using Zr:B4C powder mixtures in the molar ratios of 3:1, 3.5:1, 4:1, and 5:1 by reactive hot pressing (RHP) at 4‐7 MPa, 1200°C for 60 minutes. X‐ray diffraction analyses confirmed the formation of nonstoichiometric zirconium carbide (ZrCx) with different lattice pa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Ceramic Society 2020-11, Vol.103 (11), p.6120-6135
Hauptverfasser: Kannan, Rajaguru, Rangaraj, Lingappa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6135
container_issue 11
container_start_page 6120
container_title Journal of the American Ceramic Society
container_volume 103
creator Kannan, Rajaguru
Rangaraj, Lingappa
description ZrB2‐ZrCx composites were produced using Zr:B4C powder mixtures in the molar ratios of 3:1, 3.5:1, 4:1, and 5:1 by reactive hot pressing (RHP) at 4‐7 MPa, 1200°C for 60 minutes. X‐ray diffraction analyses confirmed the formation of nonstoichiometric zirconium carbide (ZrCx) with different lattice parameters and enhanced carbide formation by increasing the Zr mole fraction. An increase in applied pressure from 4 to 7 MPa was responsible for the improved relative density (RD) of 4Zr:B4C composition from 86% to 99%. Microstructural studies on Zr‐rich composites showed a reduction in unreacted B4C particles and enriched elongated ZrB2 platelets. Reaction and densification mechanism in 4Zr:B4C composition were studied as a function of temperature increased from 600 to 1200°C at an applied constant pressure of 7 MPa. After 1000°C,
doi_str_mv 10.1111/jace.17338
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2441964150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2441964150</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1408-851b6041b0136606972be4c0dfb4a0900bc18c141ddd0bb0a9bd31d0d1988dcb3</originalsourceid><addsrcrecordid>eNotUMtOwzAQtBBIlMKFL7DEtSm7iZMmxxLKS5W4wKWXyK-0rtI42CnQG5_AN_IluJS97M7OaB9DyCXCGENcr7nUY5wkSX5EBpimGMUFZsdkAABxNMljOCVn3q8DxCJnA-JudetNbSTvjW1HdKPlircBNiPKW0V7Z4Rt7HLfoZ2znXa90Z7ami7cTfzz9b1w5SeVdtNZb_rABJHaSq2o2FGnuezNu6Yr2wdCe2_a5Tk5qXnj9cV_HpLXu9lL-RDNn-8fy-k86pBBHuUpigwYCsAkyyArJrHQTIKqBeNQAAiJuUSGSikQAnghVIIKVHgsV1IkQ3J1mBsuettq31dru3VtWFnFjGGRMUwhqPCg-jCN3lWdMxvudhVCtTe02hta_RlaPU3L2V-V_AKrFG1Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2441964150</pqid></control><display><type>article</type><title>Densification, mechanical, and tribological properties of ZrB2‐ZrCx composites produced by reactive hot pressing</title><source>Wiley Journals</source><creator>Kannan, Rajaguru ; Rangaraj, Lingappa</creator><creatorcontrib>Kannan, Rajaguru ; Rangaraj, Lingappa</creatorcontrib><description>ZrB2‐ZrCx composites were produced using Zr:B4C powder mixtures in the molar ratios of 3:1, 3.5:1, 4:1, and 5:1 by reactive hot pressing (RHP) at 4‐7 MPa, 1200°C for 60 minutes. X‐ray diffraction analyses confirmed the formation of nonstoichiometric zirconium carbide (ZrCx) with different lattice parameters and enhanced carbide formation by increasing the Zr mole fraction. An increase in applied pressure from 4 to 7 MPa was responsible for the improved relative density (RD) of 4Zr:B4C composition from 86% to 99%. Microstructural studies on Zr‐rich composites showed a reduction in unreacted B4C particles and enriched elongated ZrB2 platelets. Reaction and densification mechanism in 4Zr:B4C composition were studied as a function of temperature increased from 600 to 1200°C at an applied constant pressure of 7 MPa. After 1000°C, &lt;40 vol.% of unreacted Zr was observed during the densification process. Concurrently, low energies of carbon diffusion and carbon vacancy formation were found to enhance nonstoichiometric ZrCx formation, which was found to be responsible for the completion of the reaction. The plastic deformation of unreacted Zr was responsible for the densification of the ZrB2‐ZrCx composite. The results clearly showed that the applied pressure is five times lower than the reported values. Moreover, a temperature of 1200°C was sufficient to produce dense ZrB2‐ZrCx composites. The improved microhardness, flexural strength, fracture toughness, and specific wear rate were 8.2‐15 GPa, 265‐590 MPa, 2.82‐6.33 MPa.m1/2, and 1.43‐0.376 × 10−2 mm2/N, respectively.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/jace.17338</identifier><language>eng</language><publisher>Columbus: Wiley Subscription Services, Inc</publisher><subject>borides ; Boron carbide ; carbides ; Carbon ; Composite materials ; Composition ; Densification ; Flexural strength ; Fracture toughness ; Hot pressing ; Lattice parameters ; Lattice vacancies ; Microhardness ; Plastic deformation ; Platelets ; Refractory materials ; Tribology ; ultra‐high temperature ceramics ; Wear rate ; Zirconium carbide ; Zirconium compounds ; zirconium/zirconium compounds</subject><ispartof>Journal of the American Ceramic Society, 2020-11, Vol.103 (11), p.6120-6135</ispartof><rights>2020 The American Ceramic Society</rights><rights>2020 American Ceramic Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6045-9126 ; 0000-0003-4596-3129</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjace.17338$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjace.17338$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Kannan, Rajaguru</creatorcontrib><creatorcontrib>Rangaraj, Lingappa</creatorcontrib><title>Densification, mechanical, and tribological properties of ZrB2‐ZrCx composites produced by reactive hot pressing</title><title>Journal of the American Ceramic Society</title><description>ZrB2‐ZrCx composites were produced using Zr:B4C powder mixtures in the molar ratios of 3:1, 3.5:1, 4:1, and 5:1 by reactive hot pressing (RHP) at 4‐7 MPa, 1200°C for 60 minutes. X‐ray diffraction analyses confirmed the formation of nonstoichiometric zirconium carbide (ZrCx) with different lattice parameters and enhanced carbide formation by increasing the Zr mole fraction. An increase in applied pressure from 4 to 7 MPa was responsible for the improved relative density (RD) of 4Zr:B4C composition from 86% to 99%. Microstructural studies on Zr‐rich composites showed a reduction in unreacted B4C particles and enriched elongated ZrB2 platelets. Reaction and densification mechanism in 4Zr:B4C composition were studied as a function of temperature increased from 600 to 1200°C at an applied constant pressure of 7 MPa. After 1000°C, &lt;40 vol.% of unreacted Zr was observed during the densification process. Concurrently, low energies of carbon diffusion and carbon vacancy formation were found to enhance nonstoichiometric ZrCx formation, which was found to be responsible for the completion of the reaction. The plastic deformation of unreacted Zr was responsible for the densification of the ZrB2‐ZrCx composite. The results clearly showed that the applied pressure is five times lower than the reported values. Moreover, a temperature of 1200°C was sufficient to produce dense ZrB2‐ZrCx composites. The improved microhardness, flexural strength, fracture toughness, and specific wear rate were 8.2‐15 GPa, 265‐590 MPa, 2.82‐6.33 MPa.m1/2, and 1.43‐0.376 × 10−2 mm2/N, respectively.</description><subject>borides</subject><subject>Boron carbide</subject><subject>carbides</subject><subject>Carbon</subject><subject>Composite materials</subject><subject>Composition</subject><subject>Densification</subject><subject>Flexural strength</subject><subject>Fracture toughness</subject><subject>Hot pressing</subject><subject>Lattice parameters</subject><subject>Lattice vacancies</subject><subject>Microhardness</subject><subject>Plastic deformation</subject><subject>Platelets</subject><subject>Refractory materials</subject><subject>Tribology</subject><subject>ultra‐high temperature ceramics</subject><subject>Wear rate</subject><subject>Zirconium carbide</subject><subject>Zirconium compounds</subject><subject>zirconium/zirconium compounds</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNotUMtOwzAQtBBIlMKFL7DEtSm7iZMmxxLKS5W4wKWXyK-0rtI42CnQG5_AN_IluJS97M7OaB9DyCXCGENcr7nUY5wkSX5EBpimGMUFZsdkAABxNMljOCVn3q8DxCJnA-JudetNbSTvjW1HdKPlircBNiPKW0V7Z4Rt7HLfoZ2znXa90Z7ami7cTfzz9b1w5SeVdtNZb_rABJHaSq2o2FGnuezNu6Yr2wdCe2_a5Tk5qXnj9cV_HpLXu9lL-RDNn-8fy-k86pBBHuUpigwYCsAkyyArJrHQTIKqBeNQAAiJuUSGSikQAnghVIIKVHgsV1IkQ3J1mBsuettq31dru3VtWFnFjGGRMUwhqPCg-jCN3lWdMxvudhVCtTe02hta_RlaPU3L2V-V_AKrFG1Q</recordid><startdate>202011</startdate><enddate>202011</enddate><creator>Kannan, Rajaguru</creator><creator>Rangaraj, Lingappa</creator><general>Wiley Subscription Services, Inc</general><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-6045-9126</orcidid><orcidid>https://orcid.org/0000-0003-4596-3129</orcidid></search><sort><creationdate>202011</creationdate><title>Densification, mechanical, and tribological properties of ZrB2‐ZrCx composites produced by reactive hot pressing</title><author>Kannan, Rajaguru ; Rangaraj, Lingappa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1408-851b6041b0136606972be4c0dfb4a0900bc18c141ddd0bb0a9bd31d0d1988dcb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>borides</topic><topic>Boron carbide</topic><topic>carbides</topic><topic>Carbon</topic><topic>Composite materials</topic><topic>Composition</topic><topic>Densification</topic><topic>Flexural strength</topic><topic>Fracture toughness</topic><topic>Hot pressing</topic><topic>Lattice parameters</topic><topic>Lattice vacancies</topic><topic>Microhardness</topic><topic>Plastic deformation</topic><topic>Platelets</topic><topic>Refractory materials</topic><topic>Tribology</topic><topic>ultra‐high temperature ceramics</topic><topic>Wear rate</topic><topic>Zirconium carbide</topic><topic>Zirconium compounds</topic><topic>zirconium/zirconium compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kannan, Rajaguru</creatorcontrib><creatorcontrib>Rangaraj, Lingappa</creatorcontrib><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kannan, Rajaguru</au><au>Rangaraj, Lingappa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Densification, mechanical, and tribological properties of ZrB2‐ZrCx composites produced by reactive hot pressing</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>2020-11</date><risdate>2020</risdate><volume>103</volume><issue>11</issue><spage>6120</spage><epage>6135</epage><pages>6120-6135</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><abstract>ZrB2‐ZrCx composites were produced using Zr:B4C powder mixtures in the molar ratios of 3:1, 3.5:1, 4:1, and 5:1 by reactive hot pressing (RHP) at 4‐7 MPa, 1200°C for 60 minutes. X‐ray diffraction analyses confirmed the formation of nonstoichiometric zirconium carbide (ZrCx) with different lattice parameters and enhanced carbide formation by increasing the Zr mole fraction. An increase in applied pressure from 4 to 7 MPa was responsible for the improved relative density (RD) of 4Zr:B4C composition from 86% to 99%. Microstructural studies on Zr‐rich composites showed a reduction in unreacted B4C particles and enriched elongated ZrB2 platelets. Reaction and densification mechanism in 4Zr:B4C composition were studied as a function of temperature increased from 600 to 1200°C at an applied constant pressure of 7 MPa. After 1000°C, &lt;40 vol.% of unreacted Zr was observed during the densification process. Concurrently, low energies of carbon diffusion and carbon vacancy formation were found to enhance nonstoichiometric ZrCx formation, which was found to be responsible for the completion of the reaction. The plastic deformation of unreacted Zr was responsible for the densification of the ZrB2‐ZrCx composite. The results clearly showed that the applied pressure is five times lower than the reported values. Moreover, a temperature of 1200°C was sufficient to produce dense ZrB2‐ZrCx composites. The improved microhardness, flexural strength, fracture toughness, and specific wear rate were 8.2‐15 GPa, 265‐590 MPa, 2.82‐6.33 MPa.m1/2, and 1.43‐0.376 × 10−2 mm2/N, respectively.</abstract><cop>Columbus</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/jace.17338</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-6045-9126</orcidid><orcidid>https://orcid.org/0000-0003-4596-3129</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-7820
ispartof Journal of the American Ceramic Society, 2020-11, Vol.103 (11), p.6120-6135
issn 0002-7820
1551-2916
language eng
recordid cdi_proquest_journals_2441964150
source Wiley Journals
subjects borides
Boron carbide
carbides
Carbon
Composite materials
Composition
Densification
Flexural strength
Fracture toughness
Hot pressing
Lattice parameters
Lattice vacancies
Microhardness
Plastic deformation
Platelets
Refractory materials
Tribology
ultra‐high temperature ceramics
Wear rate
Zirconium carbide
Zirconium compounds
zirconium/zirconium compounds
title Densification, mechanical, and tribological properties of ZrB2‐ZrCx composites produced by reactive hot pressing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T02%3A11%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Densification,%20mechanical,%20and%20tribological%20properties%20of%20ZrB2%E2%80%90ZrCx%20composites%20produced%20by%20reactive%20hot%20pressing&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Kannan,%20Rajaguru&rft.date=2020-11&rft.volume=103&rft.issue=11&rft.spage=6120&rft.epage=6135&rft.pages=6120-6135&rft.issn=0002-7820&rft.eissn=1551-2916&rft_id=info:doi/10.1111/jace.17338&rft_dat=%3Cproquest_wiley%3E2441964150%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2441964150&rft_id=info:pmid/&rfr_iscdi=true